

AD006

用户手册

版 本 号: V1.0.0.2

版权所有©

西安恩狄集成电路有限公司

本资料内容为西安恩狄集成电路有限公司在现有数据资料基础上编制而成,本资料中所记载的实例以正确的试用方法和标准操作为前提,使用方在应用该等实例时应充分考虑外部诸条件,西安恩狄集成电路有限公司不担保或确认该等实例在使用方的适用性、适当性或完整性,西安恩狄集成电路有限公司亦不对使用方使用本资料所有内容而可能或已经带来的风险或后果承担任何法律责任。文档中所有涉及到第三方软件的,请自行购买正版软件,因第三方软件版权问题涉及到的一切后果,与西安恩狄集成电路有限公司无关。基于使本资料的内容更加完善等原因,西安恩狄集成电路有限公司保留未经预告的修改权。

西安恩狄集成电路有限公司

地 址:陕西省西安市高新区高新一路 19 号思安大厦 501

地 址:深圳市龙岗区坂田国际中心 A 栋 21 层 2112 室

电 话: + (86 29) 88322766 网 站: www.admicrochip.com

微信号: 恩狄 ADUC

版本修订记录

Bin	Version	Change List	0wner	Data
1	1. 0. 0. 0	初版	Aaron	2022. 8. 29
2	1. 0. 0. 1	1) 更新数据存储器列表 2) 更新寄存器列表	Aaron	2022. 10. 27
3	1. 0. 0. 2	更新数据存储器列表	Aaron	2022. 12. 10

目录

版	本修订	⁻ 记录	1
1	产品简	<u></u> î介	5
	1. 1	功能特性	5
	1. 2	系统结构	7
	1. 3	引脚排列	8
	1. 4	引脚说明	9
	1. 5	烧录引脚说明	10
2	中央处	·理器	11
	2. 1	处理器寄存器	11
	2. 2	存储器结构	16
		2. 2. 1. 程序存储器	16
		2. 2. 2. 数据存储器	18
		2. 2. 3. 寄存器列表	20
	2. 3	配置选项	21
3	系统时	钟	24
4	复位和	1电源电压检测	26
	4. 1	上电复位计数器(PWRT)	26
	4. 2	振荡启动计数器(OST)	26
	4. 3	复位顺序	26
	4. 4	LVD 检测	29
5	OTP 捞	操作描述	31
	5. 1	OTP 的相关寄存器	31
6	IO		34
	6. 1	IO 工作模式	35
	6. 2	上下拉电阻开漏	36
	6. 3	模拟 IO 寄存器	38
7	定时器	1 T	40
	7. 1	Timer0/WDT & Prescler/BUZZER	40

		7. 1. 1.	关于 Timer0:	40
		7. 1. 2.	使用内部时钟: 定时模式	40
		7. 1. 3.	使用外部时钟/内部 32K 时钟/运放输出: 计数模式	40
		7. 1. 4.	看门狗定时器(WDT)	40
		7. 1. 5.	Prescaler (预置器)	41
		7. 1. 6.	BUZZER(BUZZER 输出)	42
		7. 1. 7.	TMR0 与 4 路 PWM	43
	7. 2	Timer1	16 位定时/计数器	46
		7. 2. 1.	使用外部时钟/内部 32K 时钟/内部 1M 时钟/运放输出: 计数模式	46
		7. 2. 2.	TIMER1 特殊事件	47
		7. 2. 3.	1 路 16 位 PWM 输出	47
		7. 2. 4.	定时器 TIMER1 相关的寄存器	47
	7. 3	TIMER	2 定时器	51
8	捕获/比	北较/脉/	中宽度调制模块(CCP)	54
	8. 1	捕捉模	式	56
	8. 2	比较模	式	58
	8. 3	PWM 2	互补式输出	61
		8. 3. 1.	死区时间	65
		8. 3. 2.	互补式输出控制防呆电路	66
9	中断方	7式		67
	9. 1	外部中	断	67
	9. 2	Timer0	中断	67
	9. 3	Timer1	中断	68
	9. 4	Timer2	中断	68
	9. 5	Port B	输入改变中断	68
	9. 6	低电压	、高电压中断	68
	9. 7	运放/比	· 较器中断	68
	9.8	ADC 中	□断	68
	9. 9	中断的	相关寄存器	69

10	省电模式 (SLEEP)	74
	10.1 睡眠唤醒	74
11	固定参考电压(FVR)	77
12	ADC	78
	12.1 ADC 的相关寄存器	80
13	DAC	83
	13. 1 DAC 的相关寄存器	85
14	运放(OP)	86
	14.1 运放的相关寄存器	86
15	比较器(CMP)	90
16	指令集合	92
17	绝对最大额定值	94
18	操作条件	95
19	电气特性	96
20	封装尺寸	. 100

1 产品简介

1.1 功能特性

- ▶ 程序空间为 4*14K bit(4k Bytes), SRAM 为 128 字节, 8 级硬件堆栈
- ▶ 支持 2T 和 4T 的 CPU 运算模式
- ➤ CPU 双时钟模式,高速可选 16M/8M/4M/2M/1M; 低速时钟可选 1M/512K/256K/128K/64K, 并可以作为 FCPU 时钟; 通过寄存器可实时切换 CPU 时钟; CPU 有 IDLE, PWSAVE, PWOFF 三种工作模式
- ➤ TIMER0,8 位定时/计数器,可选 FCPU、OSC32K(32K 时钟)、T0CKI、运放输出作为 TIMER0 时钟,同时支持 BUZZER 输出模式;支持四路 8bit 分辨率的 PWM 输出
- ➤ TIMER1,16 位定时/计数器,有多个时钟输入选择,可以工作在异步时钟工作模式,同时 支持 IO 管脚捕捉模式的输入功能
- ➤ TIMER2, 12 位定时计数器,支持 CPU 中断,时钟源为 FCPU
- ➤ CCP, 12 位 CCP 模块, 支持一路捕获、一路比较、支持扩展成四路 12bit 分辨率独立 PWM 功能, 支持 ADC 采集和自启动自关闭
- ▶ 内置高精度电压源,提供电压 1.0V、1.1V、1.2V、2.0V、2.2V、2.4V,其中后三个参考是有前三个参考放大一倍获得
- ▶ 内置温度传感器(NTC),支持 ADC 采集,需要使用 NTC 的时候建议与技术人员联系
- ▶ 12bit 高精度的 ADC,支持多个 IO 引脚采集,同时支持内部模拟信号采集;支持自动采集比较模式,可用于低功耗下信号采集
- ▶ LVR 提供 14 种低电压选择,支持低电压中断,同时也支持高电压中断,高电压中断可选择自动强制 PB0 输出指定电平,可实现电源电压采集
- ▶ 一个轨到轨运放,可以选取多个输入作为运放/比较器输入,可用于毫伏信号放大
- ▶ 一组比较器,用于比较电压的大小
- ▶ 通过 IOSR/IOSW 指令实现 IO 寄存器读写
- ▶ 超强程序加密算法,保证芯片程序内容唯一性
- ▶ 除跳转指令为两个周期指令以外其余为单周期指令
- ▶ 运行速度: 支持最高 16 MHz CPU 运行工作频率
- ▶ 上电复位计数器(PWRT)和振荡启动计数器(Oscillator Start-up Timer OST)

- ▶ 内部振荡器集成了一个看门狗保证了可靠的操作同时软件使能看门狗操作
- ▶ IO 口的电流档是可选的,PAO、PBO-PB2 是通过大电流驱动 IO, 其他 IO 口是通过小电流驱动 IO
- ▶ 通过编程控制 I/O 端口的上拉/下拉、开漏等状态 , 上拉电阻支持两类选择。
- ▶ 中断
- ▶ 三个内部计数/定时器中断源
- ➤ 三个外部 IO 管脚中断源: INT 管脚
- ▶ PortB 的输入改变中断源
- ➤ CCP 中断源
- ▶ 低电压、高电压 LVD 中断源
- > 运放输出电压比较中断源
- ➤ ADC 中断
- ➤ OP 中断
- ▶ 通过外部中断、PortB中断、LVD中断、TIMER中断、CCP比较模式、WDT溢出和外部复位实现睡眠模式唤醒
- ▶ 内部有 16MHz RC 振荡器 (常温 1%误差)、1MHz RC 振荡器 (常温 3%误差)
- ▶ 有可靠的保证使得程序代码不被读出
- ▶ 支持 OTP 自编程功能;并支持整个程序空间读取和写入
- ▶ VCC 工作电压范围: 2.2-5.5V, CPU 工作的最高频率为 16MHz

1.2 系统结构

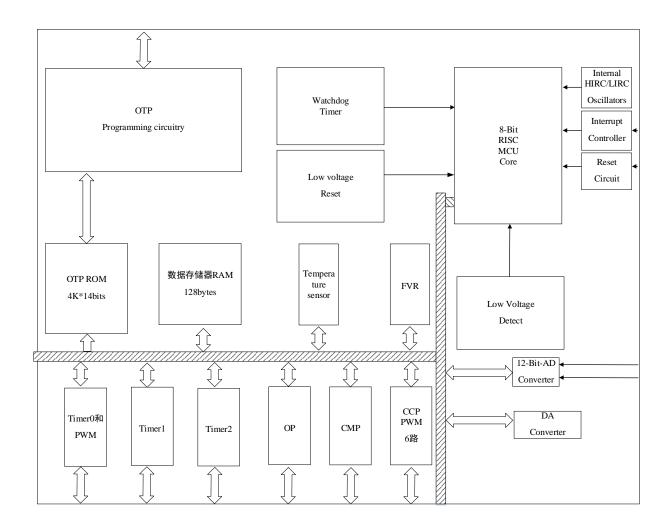


图1. 系统结构图

1.3 引脚排列

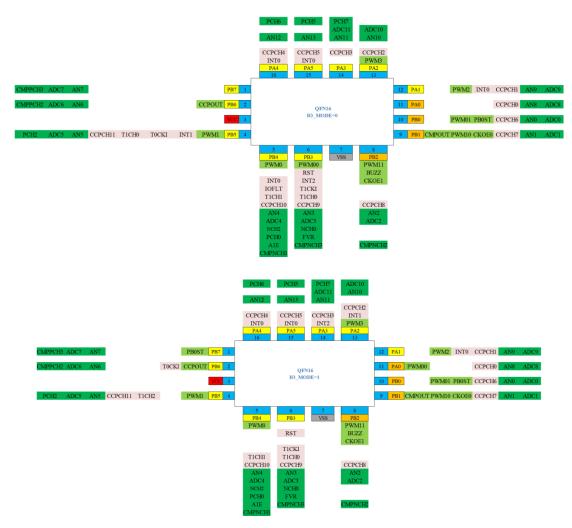


图2. QFN16 引脚排列

图3. SOP16 引脚排列

1.4 引脚说明

PIN	IO_MODE=1			IO_MODE=0						ANALOG				PIN			
PIN	FUNC1	FUNC2	FUNC3	FUNC4	FUNC1	FUNC2	FUNC3	FUNC4	FUNC5	FUNC6			AINA	TOG.			PIN
PB0	PWM01			CCPCH6	PWM01	PB0ST				CCPCH6	AN0	ADC0	NCH0				PB0
PB1	CMPOUT	PWM10	CKOE0	CCPCH7	CMPOUT	PWM10	CKOE0			CCPCH7	AN1	ADC1	NCH2	PCH0			PB1
PB2	PWM11	BUZEE	CKOE1	CCPCH8	PWM11	BUZEE	CKOE1			CCPCH8	AN2	ADC2				CMPNCH2	PB2
PB3	RST	T1CKI	TICH2	CCPCH9	PWM00	RST	INT2	TICKI	TICH2	CCPCH9	AN3	ADC3		PCH2	FVR	CMPNCH3	PB3
PB4	PWM0		T1CH1	CCPCH10	PWM0	INT0	IOFLT		T1CH1	CCPCH10	AN4	ADC4			AlE	CMPNCH1	PB4
PB5	PWM1		T1CH0	CCPCH11	PWM1	INT1	T0CKI		T1CH0	CCPCH11	AN5	ADC5					PB5
PB6	CCPOUT	T0CKI			CCPOUT						AN6	ADC6				CMPPCH2	PB6
PB7	PB0ST		IOFLT								AN7	ADC7				СМРРСН3	PB7
PA0	PWM00	INT0		CCPCH0						CCPCH0	AN8	ADC8					PA0
PA1	PWM2	INT0		CCPCH1	PWM2	INT0				CCPCH1	AN9	ADC9					PA1
PA2	PWM3	INT1		CCPCH2	PWM3					CCPCH2	AN10	ADC10					PA2
PA3		INT2		ССРСН3						ССРСН3	AN11	ADC11		PCH7			PA3
PA4		INT0		CCPCH4		INT0				CCPCH4	AN12			PCH6			PA4
PA5		INT0		CCPCH5		INT0				CCPCH5	AN13			PCH5			PA5

图4. 引脚说明

信号名	功能描述
PWM01	TIMER2中的四路PWM输出
PWM00	TIMER2中的四路PWM输出
PWM11	TIMER2中的四路PWM输出
PWM10	TIMER2中的四路PWM输出
CKOE1、CKOE0	系统时钟输出
INTO、INT1、INT2	外部中断
CCPCH0-CCPCH11	CCP的捕捉通道
T0CKI	TIMER0的外部时钟
TICKI	TIMER1的外部时钟
CCPOUT	CCP的输出
PB0ST	LVD的外部中断
BUZZER	TIMER0的BUZZER模式
AN0-AN13	模拟通道
ADC0-ADC11	ADC的模拟通道
NCH0-NCH2	OP的负端信号选择
РСН0-РСН7	OP的正端信号选择
A1E	OP的输出
T1CH0-T1CH2	TIMER1的脉宽输入信号
RST	芯片的复位信号
PWM0、PWM1	TIMER0中的PWM的输出
CMPOUT	比较器的输出
CMPNCH2、CMPNCH3	比较器的负端
CMPPCH2、CMPPCH3	比较器的正端

图5. 引脚说明

- 注: 1、浅绿色标注的为输出,深绿色为模拟通道,其他的为输入
 - 2、使能之后的优先级 FUNC1、FUN2、FUNC3、FUNC4 依次(IO_MODE=1 和 0)
 - 3、黄色 IO 的驱动电流档可选择, 橙色 IO 为大电流驱动 IO

1.5 烧录引脚说明

	AD006烧录引脚说明								
序号	烧录引脚	烧录信号	在板说明						
1	VCC	VCC	VCC Pin和Vss Pin,在烧录时,烧录器会先供4.5V电压用于建立 连接与参数校准,再供7.6V电压,用于烧录HEX程序。因此,要						
2	VSS	GND	确保电路中,与VCC Pin相连的其它器件,要能承受住7.6V电压;						
3	PB0	CS	PB0 Pin是CS(片选),该引脚走线上不建议连接0.1uf以上的电容。不允许连接强上拉/下拉电阻。						
4	PB2	CKOE	PB2 Pin是PWM輸出,频率约1KHz左右,该引脚走线不允许出现 电容,不允许出现强上拉/下拉电阻。						
5	PB3	DAT_IN	PB3 Pin是Data IN(对于006而言),该引脚不建议连接0.1uf以上的电容。不允许连接强上拉/下拉电阻。						
6	PB4	DAT_OUT	PB4 Pin是Data OUT(对于006而言),该引脚不建议连接0.1uf以上的电容。不允许连接强上拉/下拉电阻。						
7	PB5	CLK	PB5 Pin 是 CLK,约600K,该引脚走线不允许出现电容,不允许出现强上拉/下拉电阻。						

图6. 烧录引脚说明

2 中央处理器

2.1 处理器寄存器

INDF(间接寻址寄存器)

地址: 0x00

Bit	Name Description		Attribute	Reset
7	Reserved			
6:0	FSR[6:0]	通过 FSR 访问数据区(不是一个实际的物理地址)	R/W	0x00

INDF 不是一个实际的物理地址,间接寻址时 INDF 通过 RAM 选择寄存器(FSR)来访问其所指向的地址。间接寻址读操作直接读地址 00h(FSR="0"),间接寻址不能对 INDF 直接进行写操作(尽管有些状态会发生改变)。

FSR 的 6-0 位可以用来选择 128 个寄存器(地址: 00h~7Fh)。

例 2.1: 间接寻址

地址 38 内容为 10h

地址 39 内容为 0Ah

将 38 写入 FSR 中

通过 A 读 INDF 返回 10h

FSR 加 1 (@FSR=39h)

通过 A 读 INDF 返回 0A h

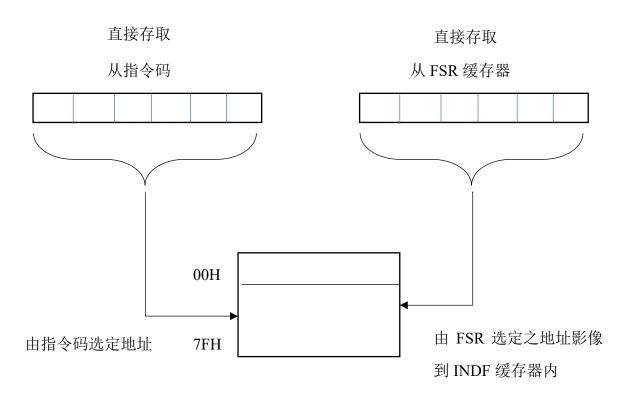


图7.直接/间接存取

PCL (Low Bytes of Program Counter)

地址: 0x02

Bit	Name	Description	Attribute	Reset
7:0	PCL[7:0]	PC 低 8 位	R/W	0x00

AD006 的 PC 指针和堆栈的位数为 12 位,堆栈有 8 级,低位的 PC 指针为 PCL 寄存器,该寄存器是可读写的,高位的 PC 指针为 PCH 寄存器,该寄存器包含 PC<11:10>位,该寄存器不能直接读写。PCH 寄存器的改变是通过 PCLATH 寄存器来实现的。每一条指令执行 PC 指针包含下一条指令的操作地址。指令没有改变 PC 内容时、在每一个指令周期 PC 指针自动加 1。

对于 GOTO 指令有 PC<11: 0>, PCL 映射成 PC<9: 0>, PCLATH 不变。

对于 CALL 指令有 PC<11: 0>, 下一条指令地址被推进堆栈, PCL 映射成 PC<9: 0>, PCLATH 不变。

对于 RETLW, RETFIE, RETURN 指令有 PC<11: 0>, PC 的内容更改为出栈信息, PCL 映射成 PC<9: 0>, PCLATH 不变。 对于其他指令, PCL 就是目标信息, PC<9: 0>的

内容就是指令地址或。不管怎样,PC<11: 10> 来源于 PCLATH<1: 0> 位 (PCLATH PCH),PCLATH 不会改变,从而 PCH 不会改变。

1、GOTO 指令

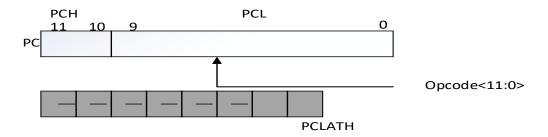


图8. GOTO 指令调用 PC 指针的跳转方式

2、CALL 指令

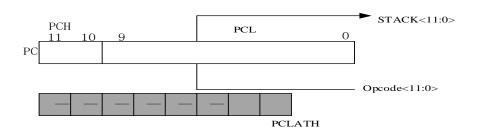


图9. CALL 指令调用 PC 指针的跳转方式

3、RETLW, RETFIE, RETURN 指令

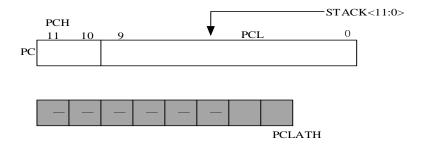


图10. RETLW、RETFIE、RETURN 指令调用 PC 指针的跳转方式

4、以PCL为目的的指令

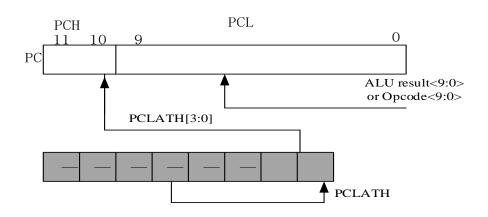


图11. PCL 指令调用 PC 指针的跳转方式

注释 1. PCLATH 只有在 PCL 内容是目标地址才有效,当 PCL 是运算结果时候,PCLATH 不起作用。

STATUS (状态字寄存器)

地址: 0x03

Bit	Name	Description	Attribute	Reset
7	RST	定义系统复位类型位 1: Port B 脚位变化唤醒 SLEEP 0: 其他类型唤醒 SLEEP	R/W	0
6	GP1	通用寄存器读/写位	R/W	0
5	RP0	寄存器 BANK 访问选择 1: 设定访问 BANK10/ BANK11 寄存器 0: 设定访问 BANK0 寄存器 (BANK10/ BANK11 选择通过 MAPEN 来区别)	R/W	0
4	ТО	看门狗溢出标志位 1: 当系统上电时或执行"CLRWDT"或 SLEEP 指令后 0: 看门狗定时器溢出	R/W	1
3	PD	系统休眠标志位 1: 当系统上电时或执行"CLRWDT"指令后 0: 当执行"SLEEP"指令后	R/W	1
2	Z	零标志位 1: 算术或逻辑运算结果为"0"时 0: 算术或逻辑运算结果不为"0"时	R/W	0
1	DC	辅助进位/借位标志.(低四位向高四位进位/借位标志) ADDWF, ADDLW 1: 低 4 位有进位	R/W	0

		0: 低 4 位无进位 SUBWF, SUBLW 1: 低 4 位无借位 0: 低 4 位有借位		
0	С	进位标志 ADDWF, ADDLW 1: 有进位 0: 无进位 SUBWF, SUBLW 1: 无借位 0: 有借位	R/W	0

状态字寄存器包含运算标志,结果标志。

指令执行以后可能会影响 STATUS 寄存器的 Z、DC 、C 标志位,则不能直接对这三个标志位进行写操作,这些标志位的设置由 MCU 的逻辑自动完成。同时,TO 和 PD 位也是不能通过指令直接改变写操作。因此,与 STATUS 作为目标寄存器的指令后,结果可能会与预期的不同。例如:运行 CLRF STATUS 将把 STATUS 的高三位置零和 Z 标志位置 1 同时该寄存器的内容如下

0 0	0	u	u	1	u	u
-----	---	---	---	---	---	---

u 表示为指令执行前后该位

注释:减法是通过将 2 的补第二个操作数的执行。旋转(RRF, RLF)指令,该位装载高或低位源寄存器位。

FSR (间接寻址指针)

地址: 0X04

Bit	Name	Description	Attribute	Reset
7	Reserved			
6:0	FSR	用来选择访问间接寻址时目标寄存器地址.	R/W	0x00

PCLATH (PC 指针高位缓冲区)

地址: 0X0A

Bit	Name	Description	Attribute	Reset
7:4	Reserved			
3:0	PCLATCH	PCLATCH[3:0]	R/W	0x00

2.2 存储器结构

AD006 存储器包含程序存储器和数据存储器。

2.2.1. 程序存储器

AD006 有一个 12 位 PC 指针能访问 4K×14 的存储空间。

AD006 的复位地址为根据 MCU_SEL 选择可配置为 000H 和 FFFH。

H/W 中断向量地址根据 MCU_SEL 选择可配置为 004H,008H, S/W 中断向量地址 001H 和 002H。如下表所示, AD006 的 CALL/GOTO 能指向在同一个程序页面(一个程序页面为 4K)的所有存储空间。

MCU_SEL	11/00	01	10
MCU	ADCPU2	ADCPU1	ADCPU0
RESET	0x0	0xFFF	0x0
H/W	0x4	0x8	0x8
S/W	NONE	0x2	0x1

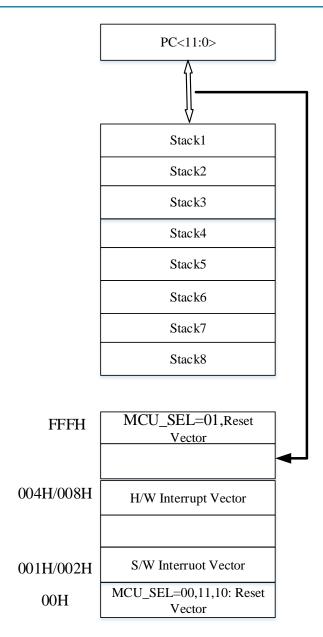


图12. 程序存储器分布图和堆栈结构

2. 2. 2. 数据存储器

数据存储器包含特殊功能器组和通用寄存器组,所有通用寄存器可以直接寻址或者通过 FSR 寄存器间接寻址。特殊功能寄存器用来控制 CPU 或外围功能模块的工作。

INDF	00H	INDF	80H	INDF	80H
TMR0	01H		81H		81H
PCL	02H	PCL	82H	PCL	82H
STATUS	03H	STATUS	83H	STATUS	83H
FSR	04H	FSR	84H	FSR	84H
PORTA	05H	TRISA	85H	SMTVA	85H
PORTB	06H	TRISB	86H	SMTVB	86H
T2CON	07H	OPCON2	87H	CURA	87H
PCON	08H	WUBCON	88H	CURB	88H
PIR1	09H	PIE1	89H	PIE1	89H
PCLATH	0AH	PCLATH	8AH	PCLATH	8AH
T0CON	0BH	T0CON	8BH	T0CON	8BH
TMR1L	0CH	T1CON0	8CH	T1CON0	8CH
TMR1H	0DH	T1CON1	8DH	T1CON1	8DH
PIE0	0EH	CMPCON	8EH	CLKCFG1	8EH
PIR0		FVRCON1	8FH	CLKCFG0	8FH
	0FH				_
CCPR1H	10H	CCPCON	90H	IAPTRIG	90H
CCPR1L	11H	PR0	91H	IAPCTRL	91H
CCPR1LH	12H	PWM0DUTY	92H	IAPADDRH	92H
DACON	13H	PWM2CON2	93H	IAPADDRL	93H
OPCON0	14H	PWM2CON3	94H	IAPDATH	94H
OPCON1	15H	PR2L	95H	IAPDATL	95H
TMR2L	16H	PR2H	96H	IAPWAIT	96H
TMR2H	17H	ANASEL0	97H	PWM0CON	97H
PMS	18H	ANASEL1	98H		98H
PXC	19H	PDACON	99H		99H
DTC	1AH	ODACON	9AH		9AH
POLS	1BH	PUACON	9BH		9BH
ADRESH	1CH	PDBCON	9CH		9CH
ADRESL	1DH	ODBCON	9DH		9DH
ADCON0	1EH	PUBCON	9EH		9EH
ADCON1	1FH	SMCR	9FH		9FH
	20H		A0H		A0H
	21H				
		32Byte		32Byte	
			BFH	_	BFH
96Byte		V 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2111		2111
SRAM					
SICAIVI					
			DOTT		DOT!
	70H		F0H		F0H
		16byte		16byte	
	7DH	Common		Common	
	7EH				
	7FH		FFH		FFH
BANK0		BANK10		BANK11	

图13. 数据存储器

备注:

1、切换 BANK0 和 BANK10 在 C 编译器中是自动完成。如果是汇编工程则需要手动切换 BANK0 和 BANK10,通过操作 STATUS 中的 RP0 位来实现。

汇编工程:

BCF STATUS, 5 ;切换到 BANK0 BSF STATUS, 5 ;切换到 BANK10

2、BANK10 和 BANK11 的切换不管是 C 工程还是汇编工程都是通过 MAPEN (PIR0<7>) 位控制,访问不同 BANK 寄存器时,应将 BANK 切换正确。

如访问 CLKCFG1 寄存器:

C 工程:

MAPEN=1; //切换到 BANK11 空间

CLKCFG1=0X05; //通过 CKOE 输出系统时钟

MAPEN=0; //切换到 BANK10 空间,建议访问完 BANK11 空间,立即切换到 BANK10 空间

汇编工程:

BSF PIR0,7 ; MAPEN = 1 MOVLW 0x7E ; W 写入 7EH

BSF STATUS,5

MOVWF CLKCFG0 ;7EH 写入 CLKCFG0

BCF STATUS,5

BCF PIR0,7 ;MAPEN = 0

2. 2. 3. 寄存器列表

SRAM	REG	BIT7	BIT6	BIT5	BIT4	вітз	BIT2	BIT1	BITO	por & bor reset value	other reset value
0x00	INDF		Addres	sing this location 1	use contents of FSF	to address data m	emory (not a phy:	sical register)	•	xxxx xxxx	uuuu uuuu
0x01	TMR0				T	MR0[7:0]				xxxx xxxx	uuuu uuuu
0x02	PCL				P	CL[7:0]				0000 0000/1111 11	1 0000 0000/1111 1111
0x03	STATSU	RST	RP1	PR0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
0x04	FSR			•		FSR[6:0]		•	•	-xxx xxxx	-uuu uuuu
0x05	PORTA			PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	XXXX XXXX	uuuu uuuu
0x06	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	0000 0000	uuuu uuuu
0x07	T2CON	PWM2CAEN	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS2	TMR2ON	T2CKPS1	T2CKPS0	0000 0000	uuuu uuuu
0x08	PCON	WDTE	PB0ST	LVI	OM[1:0]		LV	T[3:0]	•	1000 0000	1000 0000
0x09	PIR1	CMPIF	LVDIF				INT2IF	INT1IF	INT0IF	0 0000	0 0000
0x0a	PCLATH							PCH[2:0]		000/11	000/111
0x0b	T0CON	T0OUT	T0CS1	T0CS0	T0SE	PSA	PS2	PS1	PS0	0111 1111	0111 1111
0x0c	TMR1H				Timer1 Re	gister High Byte				0000 0000	uuuu uuuu
0x0d	TMR1L				Timer1 Re	gister Low Byte				0000 0000	uuuu uuuu
0x0e	PIE0	GIE	T2IE	T1IE	ADIE	OPIE	CCP1IE	PBIE	T0IE	0000 0000	0000 0000
0x0f	PIR0	MAPEN	T2IF	T1IF	ADIF	OPIF	CCP1IF	PBIF	T0IF	0000 0000	0000 0000
0x10	CCPR1H				Capture/Compare/P	WM Register 1 His	h Byte			0000 0000	0000 0000
0x11	CCPR1L				Capture/Compare/P					0000 0000	0000 0000
0x12	CCPR1LH					I		R1L[11:8]		0000	0000
0x13	DACON		DACEN	DACS5	DACS4			C[3:0]		-0xx xxxx	uuuu uuuu
0x14	OPCON1	OPOUT	LVDST	AN AVSS	PCH2	PGAEN	OPPOS	CMPMODE	OUTEN	x000	x000
0x15	OPCON	OPON	EX	AINS	A102N		I[1:0]		I[1:0]	Oxxx xxxx	Ouuu uuuu
0x16	TMR2L					IR2L[7:0]				0000 0000	0000 0000
0x17	TMR2H					[,	TMF	22H[3:0]		0000	0000
0x18	PMS		CMPFI	LTER[3:0]		PMS	1[1:0]		0[1:0]	0000	0000
0x19	PXC	PWM	1EN[1:0]		I0EN[1:0]		1[1:0]		0[1:0]	0000	0000
0x1a	DTC	DTCKS1	DTCKS0	DTEN	DTD4	DTD3	DTD2	DTD1	DTD0	0000 0000	0000 0000
0x1b	POLS	Brenzer	PT0MODE	DIE	PTIMODE		S1[1:0]		S0[1:0]	0000	0000
0x1c	ADRESH		TOMODE		TTIMODE	TOL		egister High Byte	50[1.0]	0000 0000	0000 0000
0x1d	ADRESL	_			A/D Decult	Register Low Byte	AD Result R	egister riigir Dyte		0000 0000	0000 0000
0x1e	ADCON0	ADFM	ADSP	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
0x1f	ADCON1	ADVREF1	ADVREF0	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0000 0000	0000 0000
0x80	INDF	ADVICEIT	ADVICE	ACQ12		ysical register	ADC32	ADCSI	ADCS	N/A	N/A
0x81	11.01				not u pi) olear regioter				11111	1771
0x82	PCL				P	CL[7:0]				0000 0000	0000 0000
0x83	STATSU	RST	RP1	PR0	то	PD	Z	DC	С	0001 1xxx	000q quuu
0x84	FSR	ROI	10.1	110	10	FSR[6:0]	L	БС	10	-XXX XXXX	-uuu uuuu
0x85	TRISA			TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	t20n
0x86	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
0x87	OPCON2	TKI3D/	TRISBO	FILTER[4:0]		IKISBS	OPSMT	OPPGA1	OPPGA0	1111 1111	1111 1111
0x88	WUBCON	WUB7	WUB6	WUB5	WUB4	WUB3	WUB2	WUB1	WUB0	0000 0000	0000 0000
0x89	PIE1	CMPIE	LVDIE	WODS		IAP[1:0]	INT2IE	INTIE	INTOIE	000	000
0x82	PCLATH	CIVILIE	LVDIL		INTON	IAI [1.0]	INTZIL	PCH[2:0]	INTOIL	00/11	00/11
0x8a 0x8b	TOCON	TOOUT	T0CS1	T0CS0	TOSE	PSA	PS2	PS1	PS0	0111 1111	0111 1111
0x8c	T1CON0	T1CK1	T1CK0	T1CKPS1	T1CKPS0	T1SE	T1SYNC	TMR1CS0	TMR1ON	0000 0000	0000 0000
0x8d	T1CON1	INT2EDGE	INT1EDGE	INT0EDGE	TIEDGE	T1CH0	T1CH1	T1M1	T1M0	000	000
0x8a 0x8e	CMPCON	CMPEN	CMPOUT	CMP IO EN	CMPPOS	CMPPCH3	CMPPCH2	CMPNCH3	CMPNCH2	000	000
0x8e 0x8f	FVRCON1	FVROUTEN	FVRPGA	FVREN	FVR SEL4	FVR_SEL3	FVR SEL2	FVR_SEL1	FVR SEL0	0 0000	0 0000
0x81 0x90	CCPCON	FVROUTEN		1CH[3:0]	I VK_SEL4	FVK_SEL3		1M[3:0]	I LAK_SETO	0000 0000	0000 0000
0x90 0x91	DDO		CCP	1C11[3.0]		10[2.0]	CCP	11/1[3.0]		0000 0000	0000 0000
0x91 0x92	PRO CODITES					10[7:0]					0000 0000
0x92 0x93	PWM0DUTY			ACTART		DUTY[7:0]	TOTT	DUD COOL DROS	DUD COO A DEST	0000 0000	
0x93 0x94	PWM2CON2	PWMEN	CMPFLT	ASTART	ACLOSE	OPFLT	IOFLT	PWM20ADPOS	PWMZUADEN	0000 0000	0000 0000
	PWM2CON3					ADDLY[7:0]				0000 0000	0000 0000
0x95	PR2L				P1	R2L[7:0]		277[2.4]		0000 0000	0000 0000
0x96	PR2H	DESCRIPTION OF THE PROPERTY OF	nnc: mr	nns: mr	PD () TO	nne : ===		2H[3:1]	nnc:===	1111 1111	1111 1111
0x97 0x98	ANASEL0	PB7AEN	PB6AEN	PB5AEN PA5AEN	PB4AEN PA4AEN	PB3AEN PA3AEN	PB2AEN PA2AEN	PB1AEN PA1AEN	PB0AEN PA0AEN	1111	1111 00 0000
	ANASEL1										
0x99	PDACON			PDA5	PDA4	PDA3	PDA2	PDA1	PDA0	0000 0000	0000 0000
0x9a	ODACON			ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	00 0000	00 0000
0x9b	PUACON	DITTO 2	nnn c	PUA5	PUA4	PUA3	PUA2	PUA1	PUA0	00	00
0x9c	PDBCON	PUB7	PDB6	PDB5	PDB4	PDB3	PDB2	PDB1	PDB0	11 1110	11 1110
0x9d	ODBCON	PUB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	00 0000	00 0000
0x9e	PUBCON	PUB7	PUB6	PUB5	PUB4	PUB3	PUB2	PUB1	PUB0	11 1101	11 1101
0x9f	SMCR						SM1	SM0	SE	-010 00x0	-010 00x0

0X85	SMTVA	SMTVA[5:0]						
0X86	SMTVB			SMTVB[7:0	0]			
0X87	CURA				CURA[5:	0]		
0X88	CURB			CURB[7:0]]			
0X8E	CLKCFG1				CKOE1	CKOE0	OSCF	OSCM
0X8F	CLKCFG0		FINTOSC[2:0]		CCPCLKEN	T2CLKEN	TICLKEN	T0CLKEN
0X90	IAPTRIG			0X18,0X04,0Σ	K65			
0X91	IAPCTRL						LOCK	PG
0X92	IAPADDRH					I	APADDR[10:8]
0X93	IAPADDRL			IAPADDR[7	7:0]			
0X94	IAPDATH				IAPDAT[1	3:8]		
0X95	IAPDATL			IAPDAT[7:	0]			
0X96	IAPWAIT			IAPWAIT[7	:0]			

注: x 表示不定态, u 表示保留当前值

2.3 配置选项

配置选项1

位	名称	说明
13:8	OTP_MODE[5:0]	OTP_MODE_1K_0: 选择 4KROM 中的 1K 烧写 (000H - 3FFH) OTP_MODE_1K_1: 选择 4KROM 中的 1K 烧写 (400H - 7FFH) OTP_MODE_1K_2: 选择 4KROM 中的 1K 烧写 (800H - BFFH) OTP_MODE_1K_3: 选择 4KROM 中的 1K 烧写 (C00H - FFFH) OTP_MODE_2K_0: 选择 4KROM 中的 2K 烧写 (000H - 7FFH) OTP_MODE_2K_1: 选择 4KROM 中的 2K 烧写 (800H - FFFH) OTP_MODE_4K : 选择 4KROM 中的 4K 烧写 (000H - FFFH)
7	RDPIN	读取端口的方式控制位 1: 从管脚读(默认) 0: 从寄存器读
6:4	FINTOSC[2:0]	内部 RC 振荡器频率选择 111: 1:1 分频 110: 1:2 分频 101: 1:4 分频 100: 1:8 分频(默认) 011: 1:16 分频
3:0	LVT<3:0>	LVR 电压选择 0: 保留, 勿配置 1: 保留, 勿配置 2: 2.2V 3: 2.4V (为确保稳定运行, 推荐设定值为 2.4V 及以上) 4: 2.6V 5: 2.7V 6: 2.9V 7: 3.0V 8: 3.1V 9: 3.3V 10: 3.6V 11: 3.7V 12: 3.8V 13: 4.1V 14: 4.2V 15: 4.3V

配置选项2

位	名称	说明
		代码禁止读取
7	OTPDIS	1: 代码允许读取 (默认)
		0: 代码禁止读取
		代码保护选择位
6	PROTECT	1: 代码不加密 (默认)
		0: 代码加密
		芯片 I/O 的模式选择(不同模式对应 I/O 口的排布请查看引脚图)
5	IO_MODE	1: IO 引脚功能模式 1 (默认)
		0: IO 引脚功能模式 0
		振荡器模式选择
4	OSCM	1: 内部高频 RC 振荡器(默认)
		0: 内部低频 RC 振荡器
		端口上/下拉电阻选择
3	RESSEL	0: 190K (上拉) /300K (下拉)
		1: 30K(上拉)/30K(下拉)(默认)
		指令周期选择
2: 1	FCPUS	11:1个指令周期为4个机器周期(默认)
		00:1 个指令周期为 2 个机器周期
		用于控制 GPIO 的数字输入通路是否使能,如果输入为模拟信号,用户可
0	IDIS	以关闭数字输入通道防止漏电
		1: 关闭 I/O 口的数字通道
		0: 使能 I/O 口的数字通道(默认)

配置选项3

位	名称	说明
		外部复位使能
7	RESETE	1: 屏蔽外部复位功能 (默认)
		0: 使能外部复位功能
		低压复位使能
6	LVTEN	1: 禁止低压复位功能
		0: 使能低压复位功能 (默认)
		芯片兼容选择
5~4	MCU SEL	00/11: ADCPU2
	Wee_see	01: ADCPU1
		10: ADCPU0
		WDT 使能
3	WDTE	1: 使能 WDT(默认)
		0: 关闭 WDT
		看门狗溢出时间及上电复位时间选择
		111: PWRT = TWDT (no Prescaler) = 32ms
		110: PWRT = TWDT (no Prescaler) = 4.5ms
		101: PWRT = TWDT (no Prescaler) = 288ms
2~0	TWDT	100: PWRT = TWDT (no Prescaler) = 72ms
		011: PWRT = 640us; TWDT (no Prescaler) = 32ms(默认)
		010: PWRT = 640us; TWDT (no Prescaler) = 4.5ms
		001: PWRT = 640us; TWDT (no Prescaler) = 288ms
		000: PWRT = 640us; TWDT (no Prescaler) = 72ms

3 系统时钟

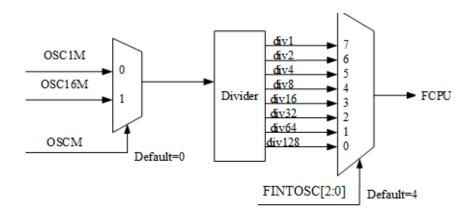


图14. 系统时钟结构示意图

CLKCFG1 (MAPEN=1 时,寄存器写入)

地址: 0X8E

Bit	Name	Description	Attribute	Reset
7:5	Reserved			
		同于防呆逻辑(mistake proofing)		
4	PWMH	1: 使能保护	R/W	0
		0: 不使能保护		
		PB2 输出当前系统时钟		
3	CKOE1	1: 使能系统时钟输出	R/W	0
		0: 禁止系统时钟输出		
		PB1 输出当前系统时钟		
2	CKOE0	1: 使能系统时钟输出	R/W	0
		0: 禁止系统时钟输出		
		内部工作时钟状态位		
1	OSCF	1: 表示低速时钟工作(1MHz)	R	0
		0: 表示高速时钟工作(16MHZ)		
0	OSCM	系统时钟选择	R/W	0

	1: 选择内部高速时钟 16MHz 作为 FCPU	
	0:选择内部低速时钟 1MHz 作为 FCPU	
	注意:	
	当寄存器未设置时,系统时钟配置以配置字为主	
	当使用寄存器配置时,系统时钟配置以寄存器配置为主	

CLKCFG0(MAPEN=1 时,寄存器写入)

地址: 0X8F

Bit	Name	Description	Attribute	Reset
7	Reserved		R/W	0
		FCPU 时钟分频选择		
		111: 1:1 分频		
		110: 1:2 分频		
		101: 1:4 分频		
6: 4	FINTOSC[2:0]	100: 1:8 分频	R/W	100
		011: 1:16 分频		
		注意:		
		当寄存器未设置时,系统时钟配置以配置字为主		
		当使用寄存器配置时,系统时钟配置以寄存器配置为主		
3	CCPCLKEN	CCP 的时钟使能,使能后 CCP 才可以工作	R/W	1
3	CCFCLKEN	1: 允许使能 0: 禁止使能	IC/ W	1
2	T2CLKEN	TIMER2 的时钟使能,使能后 TIMER2 才可以工作	R/W	1
2	12CLREN	1: 允许使能 0: 禁止使能	K/ W	1
1	T1CLKEN	TIMER1 的时钟使能,使能后 TIMER1 才可以工作	R/W	1
1	TICLKEN	1: 允许使能 0: 禁止使能	K/ W	1
		TIMER0 的时钟使能,使能后 TIMER0 才可以工作		
0	T0CLKEN	1: 允许使能	R/W	1
		0: 禁止使能		

4 复位和电源电压检测

AD006 单片机能通过以下方式复位:

- ▶ 上电复位(Power-on Reset POR)
- ▶ 掉电复位(Brown-out Reset BOR)
- ➤ RSTB 管脚复位
- ▶ 看门狗 WDT 溢出复位

通过 Vdd 上升沿号检测告知芯片是否加上上电复位脉冲信号,要使用这个特点,用户需要把 RSTB 管脚连接到 Vdd。

掉电复位作为一种典型应用主要用在 AC 或重载交换的应用上。

RSTB 或 WDT 睡眠唤醒也导致芯片复位。根据不同的状态设置对/TO 和/PD 位(STATUS<4: 3>)置1或清零。

4.1 上电复位计数器(PWRT)

上电复位计数器提供一个 18/4.5/288/72ms 延迟时间(该延迟时间由 TWDT<1:0>设置)(或 640us,基于不同的振荡源和复位条件)在 Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset 或看门狗溢出复位。只要 PWRT 在运行,设备就一直保持复位的状态。Vdd、温度和其他变化而会影响 PWDT 控制的设备延迟时间。

4.2 振荡启动计数器(OST)

在 HF、LF 或 IRC_RTC 振荡模式下在 PWRT 延迟 (18/4.5/288/72ms)之后,振荡启动计数器会再提供 64 个 clock 的延迟。这种延迟晶体谐振器能提供稳定的振荡源,这段时间内只要 OST 在工作,设备就一直保持着复位的状态。

4.3 复位顺序

AD006 复位时序如下:

- ▶ 复位锁存器置 1.PWRT & OST 清零。
- ▶ 当内部的 POR, BOR, RSTB 复位或 WDT 溢出复位脉冲加载完成后, PWRT 开始计数。
- ▶ PWRT 溢出以后.OST 开始计数延迟。
- ▶ OST 延迟完成以后,复位锁存器清零最后芯片得到一个复位信号。

在高频或低频振荡模式机器复位延迟时间为 32/4.5/288/72ms 加上 64 个振荡周期,在 IRC/ERIC, ERC 振荡模式单片机会在 Power-on Reset (POR), Brown-out Reset (BOR),或 RSTB 复位以后在延迟 640us,看门狗溢出复位后再延迟 18/4.5/288/72ms 的时间。

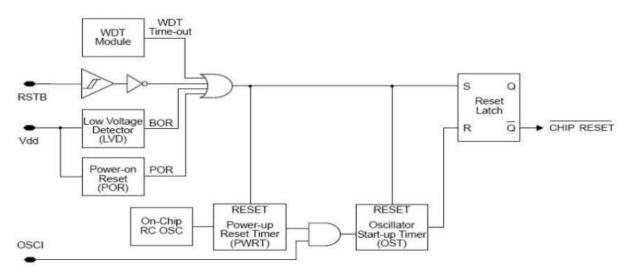


图15. 复位电路结构图

寄存器	地址	上电复位掉电复位	RSTB 复位 WDT 复位
W	N/A	xxxx xxxx	uuuu uuuu
T0CON	8bh/0bh	0011 1111	0011 1111
TRISB	86h	11 1111	11 1111
SMCR	9Fh/1Fh	-010 00x0	-010 00x0
TMR0	0Bh	xxxx xxxx	uuuu uuuu
PCL	02h	1111 1111/0000 0000	1111 1111/0000 0000
STATUS	03h	0001 1xxx	000# #uuu
FSR	04h	xx xxxx	uu uuuu
PORTB	06h	xx xxxx	uu uuuu
PCON	08h	1000 0000	1000 0000
WUBCON	98h/18h	00 0000	00 0000
PCLATH	8Ah/0Ah	00	00
PDBCON	9Ch/1Ch	11 1010	11 1010
ODBCON	9Dh/1Dh	00 0000	00 0000
General Purpose Registers	10 ∼ 4Fh	xxxx xxxx	uuuu uuuu

ADRESH	1ch	0000 0000	0000 0000
ADRESL	1dh	0000 0000	0000 0000
ADCON	1eh	0000 0000	0000 0000

Legend: u = 不变, x = 未知, -= 不起作用, #=参见下表的值

表1. 复位以后各个寄存器状态列表

RST	/TO	/PD	复位方式
0	1	1	Power-on Reset
0	1	1	Brown-out reset
0	u	u	RSTB Reset during normal operation
0	1	0	RSTB Reset during SLEEP
0	0	1	WDT Reset during normal operation
0	0	0	WDT Wake-up during SLEEP
1	1	0	Wake-up on pin change during SLEEP

Legend: u=不变

表2.RST/TO/PD 复位和唤醒后的状态

事件	/TO	/PD
Power-on	1	1
WDT Time-Out	0	u
SLEEP instruction	1	0
CLRWDT instruction	1	1

Legend: u=不变

表3. /TO /PD 状态位影响事件

4.4 LVD 检测

LVD 可通过 PCON[3:0]配置电压阀值。电压检测电路有一定的回滞特性,通常回滞电压为 0.05V 左右。例如,如果选择了 3.6V 的 LVD 电压,则当电源电压下降到约 3.6V 复位有效,而电压需要上升到约 3.65V 时 LVD 复位才会解除。

PCON

地址: 0X08

Bit	Name	Description	Attribute	Reset
		看门狗使能位		
7	WDTE	0: 看门狗关闭	R/W	0
		1: 看门狗开启		
		当 LVDM=11 时, PB0ST 输出高于阈值的电压值		
6	PB0ST	PB0ST 的映射为:	R	1
0		IOMODE = 0, PB0ST 输出引脚映射为 PB0	K	
		IOMODE = 1, PB0ST 输出引脚映射为 PB7		
		电压比较中断		
		00: 禁止电压比较器	R/W	00
5:4	LVDM[1.0]	01: VCC 低于阈值电压产生中断		
3:4	LVDM[1:0]	10: VCC 高于阈值电压产生中断		
		11: VCC 高于阈值电压产生中断,且强制 PB0ST		
		输出高于阈值的电压值		

		LVT3~0 VCC 电压阈值选择		
		0: 保留, 勿配置		
		1: 保留, 勿配置		
		2: 2.2V		
		3: 2.4V		
		4: 2.6V		
		5: 2.7V		
		6: 2.9V		
3:0	LVT[3:0]	7: 3.0V	R/W	0000
		8: 3.1V		
		9: 3.3V		
		10: 3.6V		
		11: 3.7V		
		12: 3.8V		
		13: 4.1V		
		14: 4.2V		
		15: 4.3V		

注: PCON 寄存器中的 LVT 电压值的选择用于产生中断,配置字中的 LVR 电压选择用于产生复位,两者相互独立,复位的优先级高于中断。

5 OTP 操作描述

OTP 能够自编程的地址空间从 000H 到 FFFH, IAPADDR[11:0] (由 IAPADDRH 高 4 位和 IAPADDRL 组成)对应 OTP 的地址 0H。IAPDATH[13:8]和 IAPDATL[7:0]组成 14 位数据。

OTP 写入数据操作步骤:

- 1、 写入前 VCC 电压供电为 7.5V
- 2、对 IAPTRIG 连着写入 0x16,0x06,0x96, 进入到 IAP mode。注意:如果往 IAPTRIG 写入其他任何值,则进入 IAPLOCK 状态。进行重新上电来解除锁定,解除后需要 重新开始进行 IAP 写操作。
- 3、设置 IAPADDRH(高位地址)和 IAPADDRL(低位地址),设置数据要写入 OTP 对应 000H-FFFH 地址内的某个地址。
- 4、设置 IAPDATH(高位数据)和 IAPDATL(低位数据),即把需要写入数据寄存器的数据暂放在 IAPDAT 寄存器中。
- 5、PG(IAPCTRL<0>)置 1, CPU 会将 IAPDAT[13:0]数据写入 IAPADDRH 和 IAPADDRL 对应的 OTP 地址中。
- 6、如果要继续写,则回到步骤(2)开始。如果要退出写入操作,则到步骤(7)。
- 7、对IAPTRIG写入0,便可以进行写操作。

5.1 OTP 的相关寄存器

IAPTRIG(MAPEN=1,寄存器读写)

地址: 0X90

Bit	Name	Description	Attribute	Reset
7:0	IAPTRIG[7:0]	IAP 的触发寄存器	R/W	0x00

注意:对 IAPTRIG 连着写入 0x16.0x06.0x96,即可进入到 IAP mode

IAPCTRL(MAPEN=1,寄存器读写)

地址: 0x91

Bit	Name	Description	Attribute	Reset
7: 4	Reserve			
		读取配置字中的校准信息		
3	SIG	1: 读取配置字中的校准信息	R	0
		0: 禁止读取配置字中的校准信息		
		读取 IAP 的地址、数据		
2	RD	1: 读取地址和数据,可以自动清零	R	0
		0: 禁止读取		
		IAP 锁定状态位		
1	LOCK	1: 锁定	R	0
		0: 未锁定		
		写入		
0	PG	1: 写入(需要 100us)	W	0
		0: 未写入		

IAPADDRH(MAPEN=1,寄存器读写)

地址: 0x92

Bit	Name	Description	Attribute	Reset
7:5	Reserve			
3:0	IAPADDRH[3:0]	IAP 地址高四位	R/W	0000

IAPADDRL(MAPEN=1,寄存器读写)

地址: 0x93

Bit	Name	Description	Attribute	Reset
7:0	IAPADDRL[7:0]	IAP 地址低八位	R/W	0x00

IAPDATH(MAPEN=1,寄存器读写)

地址: 0x94

Bit	Name	Description	Attribute	Reset
7:6	Reserve			
5:0	IAPDATH[13:8]	IAP 数据高六位	R/W	000000

IAPDATL (MAPEN=1,寄存器读写)

地址: 0x95

Bit	Name	Description	Attribute	Reset
7:0	IAPDATL[7:0]	IAP 数据低八位	R/W	0x00

IAPWAIT(MAPEN=1,寄存器读写)

地址: 0x96

Bit	Name	Description	Attribute	Reset
7:0	IAPWAIT[7:0]	IAP 延时位	R/W	0x00

注意: 该寄存器若无特殊情况时一般填写 0x66

6 IO

PortA 和 PortB 为双向三态 I/O 口,所有 I/O 的输入/输出方式由 I/O 控制寄存器(TRISA、TRISB)设置。

PA和PB有相应的上拉控制位(PUCON寄存器)来设置使能内部上拉,如果设置为输出模式,内部上拉功能会自动关闭。

PA和PB有相应的下拉控制位(PDCON寄存器)来设置使能内部下拉。如果设置为输出模式,内部下拉功能不会自动关闭,需要自行关闭。

PA和PB有相应的开漏控制位(ODCON寄存器)来设置输出为开漏输出。

PB 有输入改变中断/唤醒功能,它的每个管脚是否具有该功能通过取决于 WUBCON 寄存器的相应位。

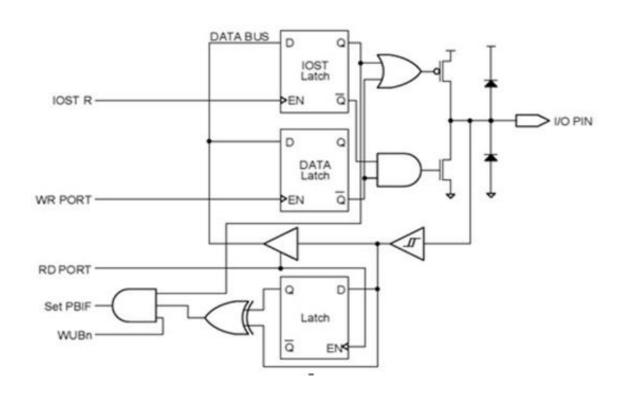


图16. I/O 脚的结构图

6.1 IO 工作模式

PORTA (Port 寄存器)

地址: 0X05

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5:0	PORTA[5:0]	输入数据(读),输出数据(写)	R/W	000000

PORTB (Port 寄存器)

地址: 0X06

Bit	Name	Description	Attribute	Reset
7:0	PORTB[7:0]	输入数据(读),输出数据(写)	R/W	0x00

TRISA (I/O 口方向控制寄存器)

地址: 0X85

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5:0	TRISA[5:0]	1: IO 的输入模式 0: IO 的输出模式	R/W	111111

TRISB (I/O 口方向控制寄存器)

地址: 0X86

Bit	Name	Description	Attribute	Reset
7:0	TRISB[7:0]	1: IO 的输入模式	R/W	0xFF
		0: IO 的输出模式		

6.2 上下拉电阻开漏

PDACON (I/O 下拉控制寄存器)

地址: 0X99

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5.0	PD + 55 03	1: 关闭内部下拉	D/W	111111
5:0 PDA[5:0]	0: 使能内部下拉	R/W	111111	

注意: PDACON(0x99)寄存器,不能位操作,也不能读操作,只能整体赋值(写);

PUACON (I/O 上拉控制寄存器)

地址: 0X9B

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5:0	PAPU[5:0]	1: 关闭内部上拉 0: 使能内部上拉	R/W	111111

注意: PUACON(0x9B)寄存器,不能位操作,也不能读操作,只能整体赋值(写);

ODACON (I/O 开漏控制寄存器)

地址: 0X9A

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5:0 OE	ODA[5:0]	1: 使能内部开漏	R/W	000000
	OD/1[3.0]	0: 关闭内部开漏	TO W	00000

注意: ODACON(0x9A)寄存器,不能位操作,也不能读操作,只能整体赋值(写);

PDBCON (I/O 下拉控制寄存器)

地址: 0X9C

Bit	Name	Description	Attribute	Reset
7:0 PDB[7:0]	DDD[7 0]	1: 关闭内部下拉	D/III	Reset 0xFD·
	PDB[/:0]	0: 使能内部下拉	R/W	

PUBCON (I/O 上拉控制寄存器)

地址: 0X9E

Bit	Name	Description	Attribute	Reset
7:0	DI IDDI7 01	1: 关闭内部上拉	D/W	0 57
	PUPB[7:0]	0: 使能内部上拉	R/W	0xF7

ODBCON (I/O 开漏控制寄存器)

地址: 0X9D

Bit	Name	Description	Attribute	Reset
7:0	ODD[7.0]	1: 使能内部开漏	D/W/	0x00
	ODB[7:0]	0: 关闭内部开漏	R/W	UXUU

WUBCON (Port B 输入改变/唤醒控制寄存器)

Bit	Name	Description	Attribute	Reset
7:0 WUB[7:0	WIID[7 0]	1: 使能 IO 输入改变/唤醒功能	D/W	0.00
	WOB[/:0]	0: 禁止 IO 输入改变/唤醒功能	R/W	0x00

6.3 模拟 IO 寄存器

ANASEL0 (IO 的模拟通道寄存器)

地址: 0X97

Bit	Name	Description		Attribute	Reset
7:0	PBnAEN[7:0]	1: PB 口打开模拟通道	0: PB 口关闭模拟通道	R/W	0x00

ANASEL1 (IO 的模拟通道寄存器)

地址: 0X98

Bit	Name	Description	Attribute	Reset
7:6	Reserved			
5:0	PAnAEN[5:0]	1: PA 口打开模拟通道 0: PA 口关闭模拟通道	R/W	000000

注意: ANASEL1(0x98)寄存器,不能位操作,也不能读操作,只能整体赋值(写);

SMTVA (A 口施密特寄存器,MAPEN=1)

地址: 0X85

Bit	Name	Description	Attribute	Reset
7:5	Reserved			
		施密特寄存器		
		1: 0.3VDD/0.7VDD(IO 低电平变为高电平时为		
5:0	SMTVA[5:0]	0.7VDD, 高电平变为低电平时为 0.3VDD)	R/W	000000
		0: 0.2VDD/0.4VDD(IO 低电平变为高电平时为		
		0.4VDD, 高电平变为低电平时为 0.2VDD)		

SMTVB (B 口施密特寄存器 MAPEN=1)

Bit	Name	Description	Attribute	Reset
7:0 SMTVB[7:0]	SMTVR[7:0]	施密特寄存器	R/W	0x00
	1: 0.3VDD/0.7VDD(IO 低电平变为高电平时为 0.7VDD,	IV W	0.000	

高电平变为低电平时为 0.3VDD)	
0: 0.2VDD/0.4VDD(IO 低电平变为高电平时为 0.4VDD,	
高电平变为低电平时为 0.2VDD)	

CURA(MAPEN=1,寄存器读写)

地址: 0X87

Bit	Name	Description	Attribute	Reset
7:5	Reserved			
		PA 口的电流驱动		
5:0	CURA[5:0]	1: 允许 IO 口的电流驱动	R/W	000000
		0: 禁止 IO 口的电流驱动		

CURB(MAPEN=1,寄存器读写)

Bit	Name	Description	Attribute	Reset
		PB 口的电流驱动		
7:0	CURB[7:0]	1: 允许 IO 口的电流驱动	R/W	0x00
		0: 禁止 IO 口的电流驱动		

7 定时器

7. 1 Timer0/WDT & Prescler/BUZZER

7. 1. 1. 关于 Timer0:

Timer 0 是一个 8 位定时/计数器,Timer 0 的时钟源由 T0CON 寄存器的 T0CS 1和 T0CS 1位共同决定,可取值于指令周期、外部实时钟(T0CKI pin)、内部 32K 时钟源、运放输出,使用外部时钟需对该寄存器的相应位进行设置。

7.1.2. 使用内部时钟: 定时模式

T0CS[1:0](T0CON[6:5])==0 为定时模式,定时模式在没有预置器的情况下,定时寄存器每个指令周期自动加1,设置 TMR0 以后,定时器将在两个时钟周期以后开始自增。

7.1.3. 使用外部时钟/内部 32K 时钟/运放输出: 计数模式

T0CS[1:0](T0CON [6:5]) ==1,2,3 为计数模式,可以选择通过 T0CKI 的上升或下降沿、32K时钟,触发 TMR0 寄存器的增加,T0CKI 的上升沿或下降沿触发计数由 T0SE(T0CON<4>)位决定,外在时钟要求与内部时钟(Tosc)同步。同步以后,Timer0 实际增加有一个延迟。

在没有预置器的情况下,外部时钟输入同样也可以作为预置器输出; T0CKI 与内部时钟同步时能方便处理在 T2 和 T4 周期上的预分频,因此 T0CKI 为高或低电平必须要保持两个以上时钟周期才有效。

7.1.4. 看门狗定时器(WDT)

看门狗定时器(WDT)的运行依赖于芯片里的 RC 振荡器,无需任何额外电路即能工作,如在睡眠模式。在一般操作或睡眠模式情况下,看门狗定时器的溢出都会导致 MCU 复位,同时 TO (STATUS<4>)位被清零。

若 WDTE 位(PCON<7>)清零. 看门狗定时器不能工作。

在没有预置器时看门狗的溢出为 32ms, 4.5ms, 288ms, 72ms 这个时间可以通过 TWDT<2: 0> 设置。

需要看门狗的溢出周期变长,可以通过设置 T0CON 寄存器的看门狗定时器分频大于 1: 128, 因此最长的看门狗溢出周期为 36.8 秒。

CLRWDT 指令能使 WDT 和预置器清零,启用看门狗可以防止超时,如果超时 MCU 则复位。

SLEEP 指令重置 WDT 和预置器, 启用看门狗就能给机器分派一个最大睡眠时间。

注意:看门狗延时默认是最大分频【128】,通过配置 T0CON 可改变默认值,如果 T0CON->PSA 选择 TMR0 则看门狗复位时间由配置字决定,T0CON->PSA 选择 WDT 可以改变 WDT 分频选择,芯片默认选择看门狗时钟分频,如果需要看门狗复位时间和配置字符合,需要初始化 T0CON 寄存器(PSA 写零)。

7.1.5. Prescaler (预置器)

预置器是一个 8 位的向下计数器作为 Timer0 和看门狗定时器(WDT)的预置器。设置 PSA 位(T0CON<3>)决定预置器是指派给 Timer0 还是 WDT。PS<2:0> 位(T0CON<2:0>)配置分频。 当作为 Timer0 的预置器时,TMR0 会被预置器清零。当作为 WDT 的预置器的时候,CLRWD 指令会清除预置器内容。预置器不能读写,机器复位,复位后预置器各位全为 1。

为了避免机器非正常复位,当 Timer0 或 WDT 的预置器发生改变的时候,需要执行 CLRWDT或 CLRF TMR0 指令,反之亦然。

Timer0 的内部结构由下图所示:

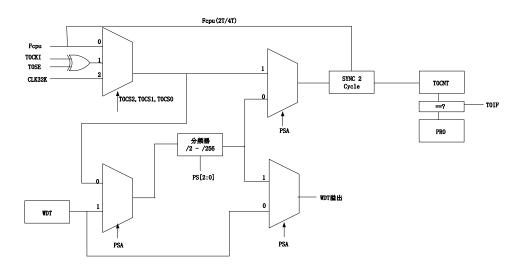


图17. Timer0/WDT Prescaler 结构图

7.1.6. BUZZER(BUZZER 输出)

Buzzer 输出是一个简单的 1/2 占空比信号输出,由 TIMER0 产生。当 TMR0 溢出时,Buzzer 开始输出一个方波,中断间隔时间频率 2 分频后作为 Buzzer 输出的频率。Buzzer 输出的波形 图如下所示:

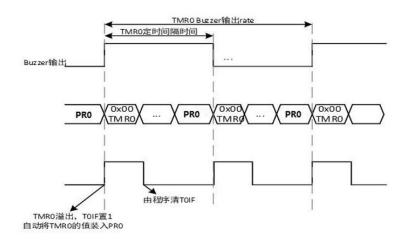


图18. Buzzer 输出示意图

TMR0 溢出后,Buzzer 输出时,T0IF 有效,且当 T0IE=1 时,使能 TIMER0 中断功能。Buzzer 输出引脚与 GPIO 引脚共用,T0OUT=1 时,该引脚自动设为 Buzzer 输出引脚。如清 T0OUT 位以禁止 Buzzer 输出后,该引脚自动返回到最后一个 GPIO 模式。

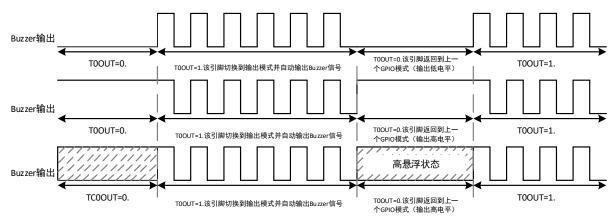


图19. Buzzer 输出/IO 切换状态示意图

7.1.7. TMR0 与 4 路 PWM

Timer0 还可用于产生 PWM 信号,如下图所示:

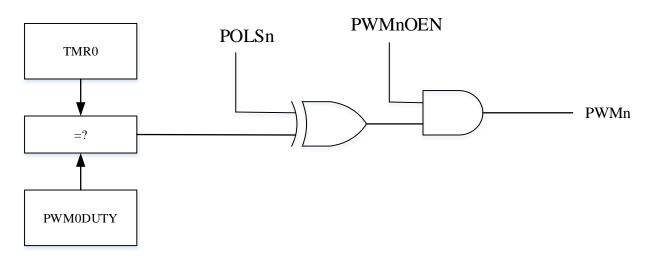


图20. PWM 原理框图

PWM0DUTY

地址: 0X92

Bit	Name	Description	Attribute	Reset
7:0	PWM0DUTY[7:0]	PWM 的占空比控制	R/W	0xFF

PR0(TIMER0的周期寄存器)

地址: 0X91

Bit	Name	Description	Attribute	Reset
7:0	PR0[7:0]	TMR0 周期寄存器	R/W	0xFF

TMR0 (定时/计数器 Time lock/Counter register)

Bit	Name	Description	Attribute	Reset
7:0	TMR0[7:0]	8 位定时/计数器	R/W	0x00

TOCON (TMRO 控制寄存器)

地址: 0X8B

Bit	Name	Descrip	otion		Attribute	Reset
		PB2 溢出	出输出 BUZZEE			0
7	T0OUT	0: 禁止	BUZZEE 模式		R/W	
		1: 启动	BUZZEE 模式			
		T0 的时	钟源选择			
		00: T0	时钟源为 CPU 运行			
6:5	T0CS[1:0]	01: T0	时钟源为 T0CKI		R/W	11
		10: T0	时钟源为内部 32K	OSC		
		11: T0	时钟源是 OPOUT i	运放输出		
		TMR0 角	烛发方式控制位			1
		1: T0C	KI 脚下降沿触发计	数		
4	T0SE	0: T0C	KI 脚上升沿触发计	数	R/W	
4	TUSE	说明:			K/ W	
		IO_MOI	DE=0: T0CKI 映射	到 PB5		
		IO_MOI	DE=1: T0CKI 映射	到 PB6		
		分频器	选择位.			
3	PSA	1: WD7	Γ(看门狗定时器)		R/W	1
		0: TMF	R0 (Timer0)			
		分频率达	选择控制位			
			Timer0 Rate	WDT Rate		
		000	1:2	1:1		
2:0	PS[2:0]	001	1:4	1:2	R/W	111
2.0	10[2.0]	010	1:8	1:4	10 11	111
		011	1:16	1:8		
		100	1:32	1:16		
		101	1:64	1:32		

110	1:128	1:64	
111	1:256	1:128	

说明:

- 1、注意:看门狗延时默认是最大分频【128】,通过配置 T0CON 可改变默认值,如果 T0CON->PSA 选择 TMR0 则看门狗复位时间由配置字决定,T0CON->PSA 选择 WDT 可以改变 WDT 分频选择。
- 2、若想关闭 Timer0,可将 TOCLKEN (CLKCFG0<0>)位置 0。

PWM0CON(PWM 的控制寄存器,MAPEN=1,寄存器读写)

Bit	Name	Description	Attribute	Reset
7:5	Reserved			
		PWM 输出极性		
4	POLS0	1: 反向输出	R/W	0
		0: 正向输出		
		PWM3 输出使能(PA2 输出)		
3	PWM03OEN	1: 使能 PWM3 输出	R/W	0
		0: 禁止 PWM3 输出		
		PWM2 输出使能(PA1 输出)		
2	PWM02OEN	1: 使能 PWM2 输出	R/W	0
		0: 禁止 PWM2 输出		
		PWM1 输出使能(PB5 输出)		
1	PWM010EN	1: 使能 PWM1 输出	R/W	0
		0: 禁止 PWM1 输出		
		PWM0 输出使能(PB4 输出)		
0	PWM000EN	1: 使能 PWM0 输出	R/W	0
		0: 禁止 PWM0 输出		

7. 2 Timer 1 16 位定时/计数器

Timer1为16位定时/计数器,内部拥有写入缓冲区,当溢出时,自动从写入缓冲区装载到TIMER1计数器作为初值,然后每个TIMER1时钟周期,计数递增。当TIMER1由计数值从周期值变为0x0000时产生溢出中断,并自动重载写入缓冲区数值。Timer1的时钟源可以是内部、外部时钟源(T1CKI pin)、内部32K时钟、运放输出等。同时TIMER1可以与CCPR1H,CCPR1L采用比较器模式,产生1路16位精度的PWM输出,输出引脚为PB6。

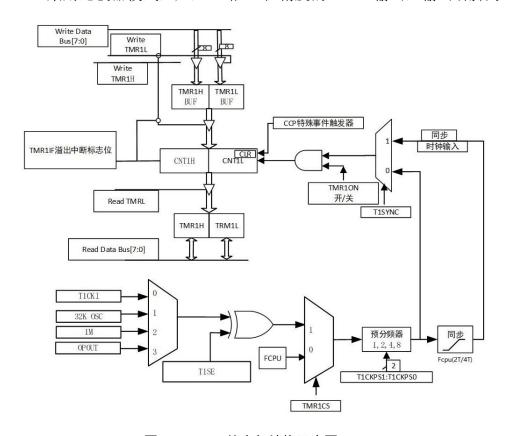


图21. Timerl 的内部结构示意图

注: CNT1L、CNTLH 为 TIMER1 内部寄存器

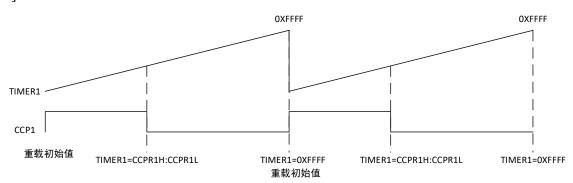
写入 16 位初值时,应先写入 TMR1H 寄存器,再后写入 TMR1L,此时硬件自动将写入缓冲区值重载到 Timerl 的计数器中;当读取 TMR1时,应先读取 TMR1L,再读取 TMR1H。

写入 TMR 寄存器后,需要等待两个 Time1 时钟周期后 TMR 寄存器才能更新。

7.2.1. 使用外部时钟/内部 32K 时钟/内部 1M 时钟/运放输出: 计数模式

设置 T1CH[1:0]==0,1,2,3 位(T1CON[7:6])为计数模式,是选择通过 T1CKI 上升或下降沿/32K 时钟/内部 1M 时钟/比较器输出,触发 Timer1 寄存器的增加,由 T1SE 位(T1CON<3>)决定上升下降触发,可以选择时钟要求与内部时钟(Tosc)是否同步。同步以后,Timer1 实际

增加有一个延迟。当不选择同步计数时,可以在低功耗模式下继续工作,低功耗模式会自动关闭内部高速时钟。


7. 2. 2. TIMER1 特殊事件

如果 CCP1 模块被配置成为特殊事件触发模式(CCP1M=1011)的比较模式,该位触发信号将复位 Timer1。如果使能了 AD 转换模块(ADON=1),则来自 CCP1 的触发信号还将触发 A/D 转换。

要使用这一功能,必须将 Timer1 配置为定时器或同步计数器。在这种情况下,[CCPR1H: CCPR1L] 这对寄存器实际上变成了 Timer1 的周期寄存器。如果 Timer1 在异步计数器模式下运行,复位操作可能不起作用。如果 Timer1 的写操作和特殊事件触发信号同时发生,则写操作优先。

7. 2. 3. 1 路 16 位 PWM 输出

如果 CCP1 模块被配置成为比较模式,同时 Timer1 配置位定时器或同步计数器,[CCPR1H: CCPR1L] 这对寄存器实际上变成了 Timer1 的占空比控制寄存器,实现 16 位 PWM 控制输。

7.2.4. 定时器 TIMER1 相关的寄存器

TMR1L (Timer1 16 位低 8 位寄存器)

地址: 0X0D

Bit	Name	Description	Attribute	Reset
7:0	TMR1L[7:0]	16 位定时/计数器低 8 位	R/W	0x00

TMR1H (Timer1 16 位高 8 位寄存器)

地址: 0X0C

Bit	Name	Description	Attribute	Reset
-----	------	-------------	-----------	-------

7:0	TMR1H[7:0]	16 位定时/计数器高 8 位	R/W	0x00
-----	------------	-----------------	-----	------

T1CON0 (Timer1 控制寄存器)

地址: 0X08C

Bit	Name	Description	Attribute	Reset
		T1 的时钟选择		
		00: T1CKI 作为时钟		
7:6	T1CK[1:0]	01: 内部 32K OSC 作为时钟	R/W	0
		10: 内部 1MHZ 作为时钟		
		11:运放 OPIOUT 作为时钟		
		T1 的输入时钟分频		
		00: TIMER1 输入时钟 1: 1 分频		
5:4	T1CKPS[1:0]	01: TIMER1 输入时钟 1: 2 分频	R/W	0
		10: TIMER1 输入时钟 1: 4 分频		
		11: TIMER1 输入时钟 1: 8 分频		
3	T1SE	TIMER1 的时钟异或输入选项	R/W	0
		1: 使用 FCPU 同步分频后时钟作为 TIMER1 时钟(注		
2	TISYNC	意不支持选择内部时钟,同时 1:1 分频,并且 T1SYNC	R/W	0
2	TISTING	为1)	K/W	U
		0: 使用选择分频时钟作为 TIMER1 时钟		
1	TMR1CS	1: 选择 T1CK[1: 0]作为外设 TIMER1 的时钟	D/W	
1	INIKICS	0:选择 FCPU 时钟外设 TIMER1 的时钟	R/W	0
0	TMR10N	1: 使能 Timer1 定时计数器	D/III	0
U	IMIKION	0: 关闭 Timer1 定时计数器	R/W	0

T1CON1 (Timer1 控制寄存器)

地址: 0X8D

Bit	Name	Description	Attribute	Reset
		外部中断边沿选择位		
		Bit5: 外部中断 0		
	DIE ED CEIA ()	Bit6: 外部中断 1	D.W.	
7:5	INTnEDGE[2:0]	Bit7: 外部中断 2	R/W	0
		1: 下降沿触发中断		
		0: 上升沿触发中断		
		在 T1M[1: 0]在脉宽测量模式时		
4	T1EDEG	1: 在上升沿启动计数,下降沿停止计数	R/W	0
		0: 在下降沿启动计数,上升沿停止计数		
		T1MER1 脉宽信号输入选择		
		00: T1CH0 作为脉宽检测输入信号(PB3)		
	T10111 T10110	01: T1CH1 作为脉宽检测输入信号 (PB4)	D/W	
3:2	T1CH1:T1CH0	10: T1CH2 作为脉宽检测输入信号(PB5)	R/W	0
		11: TMR2CLK 作为脉宽检测输入信号(配置		
		T2CON0<2>=1)		
		TIMER1 工作模式		
		00: TIMER1 工作在普通模式,溢出时间产生中断标		
		志位。		
		01: 脉宽测量模式 0, 测量上升沿与下降沿之间的时		
1:0	T1M[1:0]	间,T1EDGE=1 时,在脉冲的上升沿开始计数,脉冲	R/W	0
		下降沿停止计数,并在脉冲下降沿沿触中断。		
		T1EDGE=0 时,在脉冲的下降沿开始计数,脉冲的上		
		升沿停止计数,在脉冲上升沿触发中断。产生中断标		
		志后,可以直接读取[TMR1H: TMR1L]内容,就可以		

得到测量值。

10: 脉宽测量模式 1,测量上升沿与下降沿之间的时间,T1EDGE=1时在脉冲的上升沿[TMR1H: TMR1L]数据寄存器发生复位从 0x0000 开始计数,并在下降沿沿触中断。T1EDGE=0时,在脉冲的下降沿[TMR1H: TMR1L]数据寄存器发生复位从 0x0000 开始计数,在脉冲的上升沿触发中断。产生中断标志后,可以直接读取[TMR1H: TMR1L]内容,就可以得到测量值。11: 脉宽测量模式 2,测量信号与 T1EDGE 相等时,TIMER1 计数清零,并开始计数,不等停止计数,一共连续采样 16 次平均值后,更新到[TMR1H: TMR1L],产生中断标志位

7.3 TIMER2 定时器

Timer2 定时器模块具有以下特征:

- ▶ 12 位定时器和周期寄存器(分别为 TMR2L、TMR2H 和 PR2L、PR2H)
- ▶ 可读写(以上四个寄存器)
- ▶ 可软件编程的预分频器(分频比为 1:1、1:4、1:8、1:16)
- ▶ 可软件编程的后分频器(分频比为1:1至1:16)
- ▶ 当 TMR2 (TMR2H, TMR2L) 与 PR2 (PR2H, PR2L) 匹配时产生中断
- ➤ 采用系统时钟 Fosc 控制 (2T 和 4T 模式下的定时时间,寄存器的初始值是相同的)

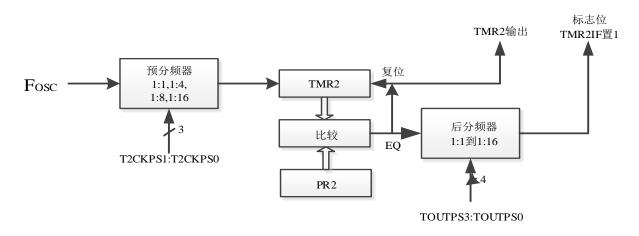


图22. T2 结构图

PR2L (timer2 的周期寄存器)

地址: 0X95

Bit	Name	Description	Attribute	Reset
7:0	PR[7:0]	周期寄存器的低 8 位	R/W	0xFF

PR2H (timer2 的周期寄存器)

Bit	Name	Description	Attribute	Reset
7:4	Reserved			
3:0	PR[3:0]	周期寄存器的高 4 位	R/W	0x0F

T2CON (timer2 控制寄存器)

Bit	Name	Description	Attribute	Reset
		Timer2 自减模式使能位		
7	PWM2CAEN	1: 使能 Timer2 自减模式。	R/W	0
		0: 禁止 Timer2 自减模式。		
		Timer2 输出后分频选择位		
		0000: 1:1 后分频值		
		0001: 1:2 后分频值		
		0010: 1:3 后分频值		
		0011: 1:4 后分频值		
		0100: 1:5 后分频值		
		0101: 1:6 后分频值		0000
		0110: 1:7 后分频值		
6:3	TOUTPS[3:0]	0111: 1:8 后分频值	R/W	
		1000: 1:9 后分频值		
		1001: 1:10 后分频值		0000
		1010: 1:11 后分频值		
		1011: 1:12 后分频值		
		1100: 1:13 后分频值		0000
		1101: 1:14 后分频值		
		1110: 1:15 后分频值		
		1111: 1:16 后分频值		
		Timer2 使能位		
2	TMR2ON	1: 使能 Timer2	R/W	0
		0: 禁止 Timer2		
1.0	T2CVPC[1 0]	Timer2 时钟预分频选择位	D/W	00
1:0	T2CKPS[1:0]	00: 预分频值为 1	R/W	00

01: 预分频值为 4	
10: 预分频值为 8	
11: 预分频值为 16	

TMR2L(Timer2 的低八位寄存器)

地址: 0X16

Bit	Name	Description	Attribute	Reset
7:0	TMR2L[7:0]	Timer2 定时/计数器的低 8 位	R/W	0x00

TMR2H(Timer2 的高八位寄存器)

地址: 0X17

Bit	Name	Description	Attribute	Reset
7:0	TMR2H[15:8]	Timer2 定时/计数器的高 8 位	R/W	0x00

注: 配置 TMR2 和 PR2 寄存器时,应先写高字节再写低字节;

8 捕获/比较/脉冲宽度调制模块(CCP)

捕捉/比较/PWM(CCP)模块包含一个1个16位寄存器,它可被用作:

- ▶ 1个16位捕捉寄存器, (由 CCP 模块与 Timer1 联合组成);
- ▶ 1个16位比较寄存器, (由 CCP 模块与 Timer1 联合组成);
- ▶ 1个PWM 主/从占空比寄存器, (由 CCP 模块与 Timer2 联合组成)。

捕捉/比较/PWM 寄存器 1(CCPR1)由两个 8 位寄存器组成: CCPR1L(低字节)和 CCPR1H (高字节)。CCPCON 寄存器控制 CCP1 的操作。比较匹配将产生特殊事件触发信号,该信号会使 TMR1H 和 TMR1L 寄存器清零。

CCPR1H

地址: 0X10

Bit	Name	Description	Attribute	Reset
7:0	CCPR1H[7:0]	CCPR1 寄存器高字节,用于捕获、比较	R/W	0x00

CCPR1L

地址: 0X11

Bit	Name	Description	Attribute	Reset
7:0	CCPR1L[7:0]	CCPR1 寄存器低字节,用于捕获、比较、PWM 的 占空比的低 8 位	R/W	0x00

CCPR1LH

Bit	Name	Description	Attribute	Reset
7:4	Reserved			
3:0	CCPR1LH[11:8]	CCPR1 寄存器低字节中的高 4 字节,用于 PWM的高 4 位	R/W	0000

Bit	Name	Description	Attribute	Reset
		CCP1 捕获触发信号选择		
		0000:外部 CCP1CH0 引脚输入信号		0000 O000
		0001:外部 CCP1CH1 引脚输入信号		
		0010:外部 CCP1CH2 引脚输入信号		
		0011: 外部 CCP1CH3 引脚输入信号		
		0100: OP1OUT 输出信号		
		0101: 内部 32K 输入信号		
7:4	CCPR1CH[3:0]	0110:外部 CCP1CH4 引脚输入信号	R/W	0000
		0111:外部 CCP1CH5 引脚输入信号		
		1000:外部 CCP1CH6 引脚输入信号		
		1001:外部 CCP1CH7 引脚输入信号		
		1010:外部 CCP1CH8 引脚输入信号		
		1011:外部 CCP1CH9 引脚输入信号		
		1100: 外部 CCP1CH10 引脚输入信号		
		1101:外部 CCP1CH11 引脚输入信号		
		CCP1 模式选择位		
		0000: 禁止捕捉/比较/PWM(复位 CCP1 模块)		
		0100: 比较模式,选择 CCPR1 匹配时将输出置为		
		高电平(CCPIF位置1),输出引脚为PB6,TIMER1		
		溢出时,PB6 为低电平,可实现 16 位 PWM 控制		0000
2.0	CCDD 11 452 01	0101: 比较模式,选择 CCPR1 匹配时将输出置为	D/W	
3:0	CCPR1M[3:0]	低电平(CCPIF位置1),输出引脚为PB6,TIMER1	R/W	
		溢出时,PB6 为高电平,可实现 16 位 PWM 控制		
		0110: 比较模式,选择 CCPR1 匹配时将产生软件		
		中断(CCPIF 位置 1,而 PB6 引脚不受影响)		
		0111: 比较模式,选择 CCPR1 触发特殊事件		
		(CCPIF 位置 1, PB6 引脚不受影响); CCP1 清		

零 Timer1; 并(当 ADCON=1) 时启动 ADC 采 1000: 捕捉模式, 在每个下降沿发生, 捕捉值存 入 CCPR1 寄存器,并产生中断标志 CCPIF 1001: 捕捉模式, 在每个上升沿发生, 捕捉值存 入 CCPR1 寄存器,并产生中断标志 CCPIF 1010: 捕捉模式, 在每4个上升沿发生一次, 捕 捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF 1011: 捕捉模式, 在每 16 个上升沿发生一次, 捕 捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF 1100: 捕捉模式,下降沿,复位 TIMER1,捕捉值 存入 CCPR1 寄存器,并产生中断标志 CCPIF 1101: 捕捉模式,上升沿,复位 TIMER1, 捕捉值 存入 CCPR1 寄存器,并产生中断标志 CCPIF 1110: 捕捉模式,下降沿,捕捉值存入 CCPR1 寄 存器,不产生中断标志 CCPIF 1111: 捕捉模式,上升沿,捕捉值存入 CCPR1 寄 存器,不产生中断标志 CCPIF 001X: PWM 模式, 启动 CCP1 PWM 模式

8.1 捕捉模式

在捕捉模式下,当引脚 CCP1 发生事件时,CCPR1H: CCPR1L 将捕捉 TMR1 寄存器的 16 位值。事件定义如下,由 CCPCON[3:0]进行配置:

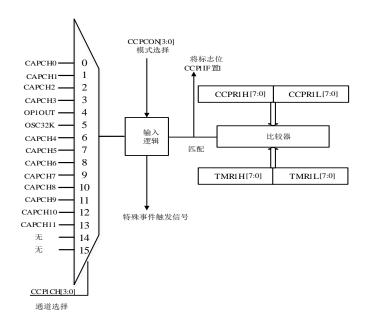


图23. CCP1 捕捉模式工作原理图

- ▶ 1000: 捕捉模式,在每个下降沿发生,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1001: 捕捉模式,在每个上升沿发生,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1010: 捕捉模式,在每4个上升沿发生一次,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1011: 捕捉模式,在每 16 个上升沿发生一次,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1100: 捕捉模式,下降沿,复位 TIMER1,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1101: 捕捉模式,上升沿,复位 TIMER1,捕捉值存入 CCPR1 寄存器,并产生中断标志 CCPIF
- ▶ 1110: 捕捉模式,下降沿,捕捉值存入 CCPR1 寄存器,不产生中断标志 CCPIF
- ▶ 1111: 捕捉模式,上升沿,捕捉值存入 CCPR1 寄存器,不产生中断标志 CCPIF

进行捕捉后,中断请求标志位 CCP1IF 被置 1。该中断标志位必须用软件清零。如果在 CCPR1H 和 CCPR1L 寄存器对中的值被读出之前又发生另一次捕捉, 那么原来的捕捉值会被新捕捉值覆盖。输入捕获通道有 CCP1CHI[3:0]进行配置:

- ▶ 0000: 外部 CCP1CH0 引脚输入信号
- ▶ 0001: 外部 CCP1CH1 引脚输入信号
- ▶ 0010: 外部 CCP1CH2 引脚输入信号
- ▶ 0011: 外部 CCP1CH3 引脚输入信号
- ▶ 0100: OP1OUT 输出信号
- ▶ 0101: 内部 32K 输入信号
- ▶ 0110: 外部 CCP1CH4 引脚输入信号
- ▶ 0111: 外部 CCP1CH5 引脚输入信号
- ▶ 1000:外部 CCP1CH6 引脚输入信号
- ▶ 1001:外部 CCP1CH7 引脚输入信号
- ▶ 1010:外部 CCP1CH8 引脚输入信号
- ▶ 1011: 外部 CCP1CH9 引脚输入信号
- ▶ 1100:外部 CCP1CH10 引脚输入信号
- ▶ 1101:外部 CCP1CH11 引脚输入信号

8.2 比较模式

在比较模式下, CCPR1 寄存器的 16 位值不断与一对 TMR1 寄存器的值进行比较。事件 定义如下,由 CCPCON[3:0]进行配置:

- ▶ 0100:比较模式,选择 CCPR1 匹配时将输出置为高电平(CCPIF 位置 1),输出引脚为 PB6; TIMER1 溢出时,PB6 为低电平;可以实现 16 位 PWM 控制;
- ▶ 0101: 比较模式,选择 CCPR1 匹配时将输出置为低电平(CCPIF 位置 1),输出引脚为 PB6; TIMER1 溢出时, PB6 为高电平;可以实现 16 位 PWM 控制;
- ▶ 0110: 比较模式,选择 CCPR1 匹配时将产生软件中断(CCPIF 位置 1,而 PB6 引脚不受影响)
- ▶ 0111: 比较模式,选择 CCPR1 触发特殊事件(CCPIF 位置 1, PB6 引脚不受影响); CCP1 清零 TIMER1; 并启动 ADC 采集(如果 ADON=1)

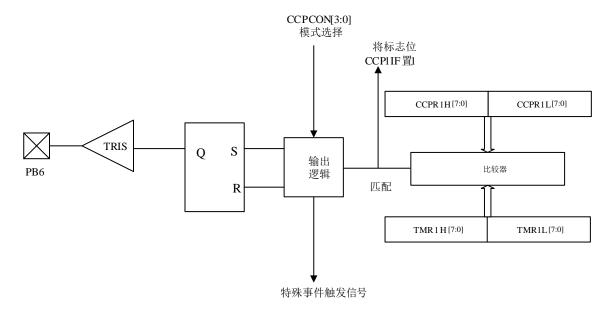


图24. 比较模式工作原理图

PWM2CON2(PWM 的控制寄存器)

地址: 0X93

Bit	Name	Description	Attribute	Reset
7	Reserved			
6		CMPOUT 为故障输入,当 CMPOUT 从 0 变为 1 后,		
	CMDELT	禁止 PWM 输出	R/W	
	CMPFLT	1: 使能 CMPOUT 作为故障输入	R/W	0
	0: 禁止 CMPOUT 作为故障输入			
		发生故障后(ACLOSE=1),当使能的故障都解除后,自		
5	ACTADT	动启动 PWM 输出	R/W	0
5	ASTART	1: 使能启动 PWM 输出		
		0:禁止启动 PWM 输出		
		发生故障后,自动关闭 PWM 输出		
4	ACLOSE	1: 使能关闭 PWM 输出	R/W	0
		0: 禁止关闭 PWM 输出		
		OPOUT 为故障输入,当 OPOUT 从 0 变为 1 后,禁止		
3	OPFLT	PWM 输出	R/W	0
		1: 使能 OPOUT 作为故障输入		

		0:禁止 OPOUT 作为故障输入		
		IO 为故障输入,当 IOFLT 从 0 变为 1 后,禁止 PWM		
		输出		
	IOPLT	1: 使能 IOFLT 作为故障输入	D/W	
2	2 IOFLT	0:禁止 IOFLT 作为故障输入	R/W	0
		注: IO_MODE 为 1 时,故障 IO (IOFLT)映射为 PB7;		
		IO_MODE 为 0 时,故障 IO(IOFLT)映射为 PB4		
		PWM10 输出跳变时触发 ADC 的边沿选择		
1	PWM10ADPOS	1: PWM10 由 0 变为 1 时触发 ADC 转换	R/W	0
		0: PWM10 由 1 变为 0 时触发 ADC 转换		
		PWM10 输出跳变时,触发 ADC 转换功能使能位		
0	PWM10ADEN	1: 使能 PWM10 跳变触发 ADC 功能	R/W	0
		0:禁止 PWM10 跳变触发 ADC 功能		

PWM2CON3 (PWM 控制寄存器 3)

地址: 0X94

Bit	Name	Description	Attribute	Reset
7:0	PWMADDLY[7:0]	PWM 启动 AD 采集延时	R/W	0x00

说明: 延迟时间= PWMADDLY[7: 0]/Fcpu。

8.3 PWM 互补式输出

互补式输出控制是通过一系列寄存器实现的。这些寄存器可用于选择 PWM 调制模式、 死区时间设置以及输出极性控制等。

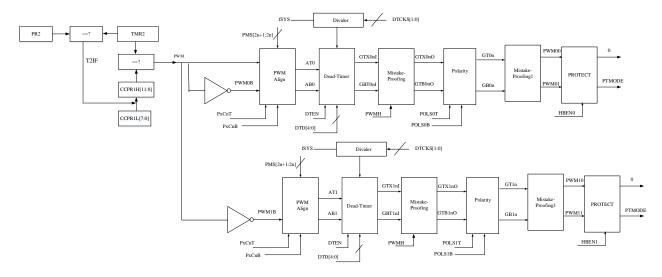


图25. Timer2 的互补式 PWM 控制器示意图

注:上臂对应 PWM00、PWM10

下臂对应 PWM01、PWM11

PXC(PWM 控制输出寄存器)

Bit	Name	Description	Attribute	Reset
		PWM11 的使能输出		
7	PWM11EN	1: 使能输出	R/W	0
		0: 禁止输出		
		PWM10 的使能输出		
6	PWM10EN	1: 使能输出	R/W	0
		0: 禁止输出		
		PWM01 的使能输出		
5	PWM01EN	1: 使能输出	R/W	0
		0: 禁止输出		
4	DWAMOOFNI	PWM00 的使能输出	D/W	0
4	PWM00EN	1: 使能输出	R/W	0

		0: 禁止输出		
3:2 PXC		PWM10、PWM11 高压电平转换驱动器的上/下臂输		
		出选择位		
	DVC1[1 A]	00: 上/下臂输出都关闭	D/III	00
	PXC1[1:0]	01: 上臂输出关闭/下臂输出导通; 输出低	R/W	00
		10: 上臂输出导通/下臂输出关闭;输出高		
		11: 上/下臂输出都关闭(防止上/下臂同时导通)		
		PWM00、PWM01 高压电平转换驱动器的上/下臂输		
		出选择位		
1.0	DVC0[1 0]	00: 上/下臂输出都关闭	R/W	
1:0	PXC0[1:0]	01: 上臂输出关闭/下臂输出导通; 输出低		00
		10: 上臂输出导通/下臂输出关闭; 输出高		
		11: 上/下臂输出都关闭(防止上/下臂同时导通)		

PMS

Bit	Name	Description	Attribute	Reset
7:4		CMP 的滤波时间		
	CMDEH TED [2.0]	T=(CMPFILTER[3: 0]<<4+0X0F) / Fcpu	R/W	0000
	CMPFILTER[3:0]	有效滤除 CMP0OUT 在 T 时间内的毛刺	K/W	0000
		CMPFILTER[3: 0]==0x00 时没有滤波		
		PWM10、PWM11 高压电平转换驱动器的调制模式		
	PMS1[1:0]	选择位		
		00: 互补式控制		
3:2		01: 非互补式上臂调制	R/W	00
		10: 非互补式下臂调制		
		11: PWM10、PWM11 控制(由 PXC11和 PXC10位		
		分别控制上/下臂输出)		
1:0	PMS0[1:0]	PWM01、PWM00 高压电平转换驱动器的调制模式	R/W	00

	选择位	
	00: 互补式控制	
	01: 非互补式上臂调制	
	10: 非互补式下臂调制	
	11: PWM01、PWM00 控制(由 PXC00和 PXC01位	
	分别控制上/下臂输出)	

DTC (死区时间控制寄存器)

地址: 0X1A

Bit	Name	Description	Attribute	Reset
		选择死区时间时钟源 for		
		00: $f_{DT}=f_{SYS}$		
7:6	DTCKS[1:0]	01: $f_{DT} = f_{SYS}/2$	R/W	00
		10: $f_{DT} = f_{SYS}/4$		
		11: $f_{DT}=f_{SYS}/8$		
		死区时间使能/除能控制		
5	DTEN	1: 允许使能	R/W	0
		0: 禁止使能		
		DTCKS 等于 0 时,死区时间计数器死区时间 =		
		$(DTD[4:0]+1)*T_{DT};$		
		DTCKS 不等于 0 时,死区时间计数器死区时间 =		
4:0	DTD[4:0]	DTD[4:0]*T _{DT} ;	R/W	00000
		注: 当 DTD 等于 0 时,死区时间总是一个 T _{sys} 。		
		死区时间误差小于一个 T _{DT} 时间。(T _{DT} =1/F _{DT} ,		
		$T_{sys}=1/F_{sys}$		

POLS (极性选择寄存器)

地址: 0X1B

Bit	Name	Description	Attribute	Reset
		保护使能 0		
7	HBEN0	1: 允许使能	R/W	0
		0: 禁止使能		
		保护 PWM01 的输出		
6	PT0MODE	1: PWM01 输出 1	R/W	0
		0: PWM01 输出 0		
		保护使能 1		
5	HBEN1	1: 允许使能	R/W	0
		0: 禁止使能		
		保护 PWM11 的输出		
4	PT1MODE	1: PWM11 输出 1	R/W	0
		0: PWM11 输出 0		
		高压电平转换驱动器上臂输出极性控制		
3	POLS11	1: 反相输出	R/W	0
		0: 同相输出		
		高压电平转换驱动器下臂输出极性控制		
2	POLS10	1: 反相输出	R/W	0
		0: 同相输出		
		高压电平转换驱动器上臂输出极性控制		
1	POLS01	1: 反相输出	R/W	0
		0: 同相输出		
		高压电平转换驱动器下臂输出极性控制		
0	POLS00	1: 反相输出	R/W	0
		0: 同相输出		

8.3.1. 死区时间

死区时间电路设计的目的为,插入死区时间可确保外部驱动电路晶体管对的上下臂在转态时不会瞬间导通(上下臂 MOS 皆开启)而产生短路电流。为了消除这种危险,设计了一段死区时间,确保输出转态的过程中,两个晶体管处于不会同时导通的状态。死区时间插入使能或除能由 DTC 寄存器的 DTEN 位控制。死区时间要控制在 0.3μs~5μs 左右,可通过 DTCKS1~DTCKS0 位选择死区时钟源,并通过 DTD4~DTD0 位对插入的死区时间进行调整。

下图为死区时间方框图和插入死区时间时序图。需注意的是,若开启死区时间功能,只有在上升沿时插入死区时间,下降沿不变化。

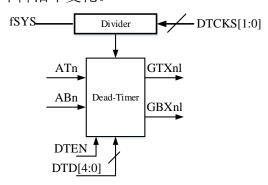


图26. 死区时间方框图(n=0或1)

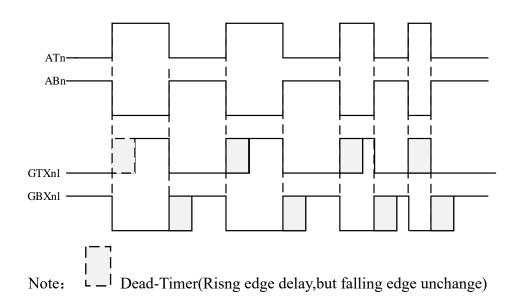


图27. 插入死区时间时序图

8.3.2. 互补式输出控制防呆电路

此防呆电路设计的目的为: 当软件有误写动作发生,或是因外力因素如 ESD 发生时,导致方向控制的寄存器被打乱,造成外部驱动晶体管对上臂与下臂的输出 MOS 皆为开启的状态,此时防呆电路则强迫输出 MOS 皆为关闭,以保护马达。

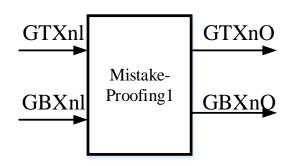


图28. 防呆电路(n=0或1)

GTXnI	GBXnI	GTXnO	GBXnO
0	0	0	0
0	1	0	1
1	0	1	0
1	1	0	0

注: 表格中的 0 表示 MOS 关闭, 1 表示 MOS 开启。

表4. 防呆电路的逻辑

9 中断方式

AD006 系统具备有五种中断方式:

- ➤ INT 管脚的外部中断
- ➤ TMR0 溢出中断
- ➤ TMR1 溢出中断
- ➤ TMR2 溢出中断
- ➤ Port B 输入改变中断 (PB[7:0]脚)
- ➤ CCP 中断
- ➤ ADC 中断

中断允许总控位 GIE (PIE0<7>), 能使所有中断被开放 (GIE=1) 或禁用所有中断(GIE=0), 每次中断能否启用由 PIE0、PIE1 寄存器决定,同时保证 GIE=1。

中断发生时 GIE 位(在中断发生前 GIE 位和该中断相关的中断使能位置 1)被硬件清零从而禁止进一步中断(AD006 不区分中断优先级别),同时下条指令跳到 004/008H (由 MCU SEL 配置位决定)后开始执行。

一个中断标志位(PBIF 除外)会被它的中断事件置 1, 而不管与它相关的中断是否启用。通过 PIR0 和 PIR1 的相应中位来判断是否发生中断以及中断类型。当通过 INT 指令发生软中断时,下条指令跳到 001/002H (由 MCU SEL 配置位决定)后开始执行。

注意:每次响应中断服务函数后需将对应的中断的标志位软件清0!

9.1 外部中断

外部中断 INT 管脚上升沿还是下降沿触发由 INTnEDG [2:0]位 (T1CON1[7:5])决定,当 一个有效的跳变发生时标志位 INTnIF(PIR1[2:0])置 1,当 INTnIE(PIE1[2:0])位清零时,禁止对应的外部中断。

在睡眠之前 INTnIE 位被置 1, INT 管脚可以作为系统睡眠唤醒条件。在睡眠之前 GIE 位被置 1, CPU 唤醒以后会执行中断服务程序,否则会运行睡眠以后的下一条指令。

9. 2 Timer() 中断

TMR0发生溢出 (TMR0=PR0)时 T0IF 标志位置 1,当 T0IE 位(PIE<0>)清零时,禁止 Timer0产生中断。

9.3 Timer1 中断

当 TMR1ON=1(T1CON0<0>)时,TIMER1 定时器开始从 TMR1H[15:8]与 TMR1L[7:0] 组成的 16 位预设值开始计数,在计数的过程中计数值到 0xFFFF 变为 0x0000 时,T1IF(PIR0<5>) 标志位置 1。当 T1IE 位(PIE0<5>)清零时,禁止 Timer1 产生中断。

9.4 Timer2 中断

当 TMR2ON=1(T2CON0<2>)时, TIMER2 定时器开始从零计数, 在计数的过程中 PR2H[3:0]和 PR2L[7:0]组成的 12 位数值与[TIMER2H: TIMER2L]寄存器的值相等时, TIMER2 定时器清零。T2IF(PIR0<6>)标志位置 1。当 T2IE(PIE0<6>)位清零, 禁止 Timer2 产生中断。

9.5 Port B 输入改变中断

Port B 输入改变中断触发时 PBIF (PIR0<1>)标志位置 1,在输入改变中断发生之前,必须读取 Port B 的信息,并同时将 PortB 的管脚相对应的 WUBn 位(WUBCON<7: 0>)和 PBIE (PIE0<1>)置 1,当 PBIE (PIE0<1>)位清零时,禁止 Port B 产生中断。

若将 PBIE 在睡眠之前置 1, Port B 输入脚改变中断也可以作为睡眠唤醒条件。

在睡眠之前 GIE 位已被置 1 机器唤醒以后会执行中断服务程序,否则会运行睡眠以后的下一条指令。

9.6 低电压、高电压中断

AD006 提供 14 组电压选择,如下所示。在 LVDM[1: 0]==2'b01 时,当系统 VCC 电压低于设定的 LVD 电压值,LVDIF(PIR1<6>)置位为 1。当 LVDIE 位(PIE1<5>)清零时,禁止LVD产生中断。

9.7 运放/比较器中断

当 OP1OUT 从 0 变为 1 时, OPIF (PIR0<3>) 置位为 1。当 OPIE 位(PIE0<3>)清零时,禁止 OP 产生中断。

9.8 ADC 中断

当 GO 从 1 变为 0 时, ADIF (PIR0<4>) 置位为 1。当 ADIE 位(PIE0<4>)清零, 禁止 ADC 产生中断。

9.9 中断的相关寄存器

PCON

Bit	Name	Description	Attribute	Reset
		看门狗使能位		
7	WDTE	0: 看门狗关闭	R/W	1
		1: 看门狗开启		
		LVDM=11 时:		
6	PB0ST	IO_MODE=0 时输出引脚为 PB0	R/W	0
		IO_MODE=1 时输出引脚为 PB7		
	电压比较中断			
		00: 禁止电压比较器		
5:4	LVDM[1.0]	01: VCC 低于阈值电压产生中断	R/W	00
3: 4	LVDM[1:0]	10: VCC 高于阈值电压产生中断		
		11: VCC 高于阈值电压产生中断,并强制 PB0ST 输		
		出 VCC 高于阈值电压值		
		LVT3~0 VCC 电压阈值选择		
		0: 保留, 勿配置		
		1: 保留, 勿配置		
		2: 2.2V		
		3: 2.4V		
3:0	LVT[3:0]	4: 2.6V	R/W	0000
3.0	Lv 1[3.0]	5: 2.7V	TO W	0000
		6: 2.9V		
		7: 3.0V		
		8: 3.1V		
		9: 3.3V		
		10: 3.6V		

11: 3.7V	
12: 3.8V	
13: 4.1V	
14: 4.2V	
15: 4.3V	

PIEO (中断屏蔽寄存器)

地址: OXOE

Bit	Name	Description	Attribute	Reset
		中断允许总控位		
		0: 禁止所有中断. 对于睡眠唤醒模式的中断事件,		
7	GIE	MCU 将执行 SLEEP 后的指令。	R/W	0
	GIE	1: 使能所有被开启的中断. 对于睡眠唤醒模式的中	IV W	
		断事件,MCU将跳转到中断地址(008h/004h,根据		
		MCU_SEL 配置位选择)。		
		Timer2 中断设置位。		
6	T2IE	1: 使能 Timer2 中断	R/W	0
		0: 禁止 Timer2 中断		
		Timerl 中断设置位。		
5	TIIE	1: 使能 Timer1 中断	R/W	0
		0: 禁止 Timer1 中断		
		AD 外部中断设置位		
4	ADIE	1: 使能 ADC 中断	R/W	0
		0: 禁止 ADC 中断		
		OP 外部中断设置位		
3	OPIE	1: 使能 OP 中断	R/W	0
		0: 禁止 OP 中断		
2	CCDIE	CCP 中断设置位。	D/W	
2	CCPIE	1: 使能 CCP 中断	R/W	0

		0: 禁止 CCP 中断		
1	PBIE	Port B 输入改变中断设置位		
		1: 使能 Port B 中断	R/W	0
		0: 禁止 Port B 中断		
0	TOIE	Timer0 溢出中断设置位。		
		1: 使能 Timer0 中断	R/W	0
		0: 禁止 Timer0 中断		

PIR0 (中断标志寄存器)

地址: 0X0F

Bit	Name	Description	Attribute	Reset
7	MAPEN	访问 BANK1 寄存器 MAPEN=0, BANK1 成为 BANK10 寄存器组 MAPEN=1, BANK1 称为 BANK11 寄存器组	R/W	0
6	T2IF	Timer2 溢出中断标志 发生 Timer2 溢出中断置 1,软件设置清零	R/W	0
5	T1IF	Timerl 溢出中断标志 发生 Timerl 溢出中断置 1,软件设置清零	R/W	0
4	ADIF	ADC 外部中断标志 发生 AD 中断置 1,软件设置清零	R/W	0
3	OPIF	运放中断标志 当 OP 从 0 变为 1 时,标志位置 1,软件设置清零	R/W	0
2	CCPIF	CCP 中断标志 发生 CCP 中断置 1,软件设置清零	R/W	0
1	PBIF	Port B 输入改变中断标志 Port B 输入改变时置 1,软件设置清零	R/W	0
0	TOIF	Timer0 溢出中断标志 发生 Timer0 溢出中断置 1,软件设置清零	R/W	0

PIE1(中断屏蔽寄存器)

地址: 0X89

Bit	Name	Description	Attribute	Reset
7	СМРІЕ	比较器中断设置位 1: 使能外部中断 0: 禁止外部中断	R/W	0
6	LVDIE	低电压中断设置位 1: 使能外部中断 0: 禁止外部中断	R/W	0
5	Reserved			
4:3	INTMAP[1:0]	外部中断 0 的映射 00: 映射 PA0 (IO_MODE=1) 映射 PB4 (IO_MODE=0) 01: 映射 PA1 (IO_MODE=1 和 IO_MODE=0) 10: 映射 PA4 (IO_MODE=1 和 IO_MODE=0) 11: 映射 PA5 (IO_MODE=1 和 IO_MODE=0)	R/W	00
2	INT2IE	外部中断 2 设置位 1: 使能外部中断 0: 禁止外部中断	R/W	0
1	INT1IE	外部中断 1 设置位 1: 使能外部中断 0: 禁止外部中断	R/W	0
0	INT0IE	外部中断 0 设置位 1: 使能外部中断 0: 禁止外部中断	R/W	0

PIR1 (中断标志寄存器)

地址: 0X09

Bit	Name	Description	Attribute	Reset
		比较器中断请求标志位		
7	CMPIF	1: 中断请求	R/W	0
		0: 无请求		
		低电压中断请求标志位		
6	LVDIF	1: 中断请求	R/W	0
		0: 无请求		
5:3	Reserved			
		INT2 外部中断标志位		
2	INT2IF	1: 产生 INT2 外部中断标志位	R/W	0
		0: 未产生 INT2 外部中断标志位		
		INT1 外部中断标志位		
1	INT1IF	1: 产生 INT1 外部中断标志位	R/W	0
		0: 未产生 INT1 外部中断标志位		
		INTO 外部中断标志位		
0	INT0IF	1: 产生 INT0 外部中断标志位	R/W	0
		0: 未产生 INT0 外部中断标志位		

10 省电模式 (SLEEP)

拥有三种睡眠模式: (IDLE、PWSAVE、PWOFF)

- ▶ 00: IDLE 模式, CPU 进入睡眠, 外设继续运行, 保存 SRAM 数据, 唤醒后打开中断会进入中断, 否则顺序执行
- ▶ 01: PWSAVE 模式,进入睡眠,保存 SRAM 数据,唤醒后打开中断会进入中断,否则顺序执行
- ▶ 11: PWOFF 模式,进入深度睡眠,不保存 SRAM 数据,唤醒从复位处执行

10.1 睡眠唤醒

在睡眠状态下,三种模式,单片机能通过以下方式唤醒:如下图所示

- 注: 1、√表示可唤醒的方式
 - 2、睡眠前,请再次将唤醒源配置使能。
- 3、所有空闲的 IO 应改为固定状态,如果外部无上下拉,IO 不能设为悬空状态,唤醒 IO 除外。
 - 4、进入睡眠前,请定义全局变量读取所有 IO 口进行锁存。

模块	睡眠模式				
1吴-坎	IDLE	PWSAVE	PWOFF		
CCP	7				
TIMERO	7				
TIMER1	7	~			
TIMER2	7				
WDT	1	~/	~		
RST	7	1	7		
INT	7	1	7		
PB	7	1	7		
LVD	1	1	1		

表5. 睡眠模式下的唤醒方式

POWERSAVE 的低功耗数据为 36uA(保留 SRAM 数据,支持 Timer1 定时唤醒); POWEROFF 的低功耗数据为 1.6uA(不保留 SRAM 数据,不支持 TIMER1 唤醒)。以上的数

据均是典型值,测试电压在 3.6V,低功耗数据会随着电压有 0.2uA 的误差。

# 44	睡眠模式					
模块	ACTIVE	IDLE	POWER SAVE	POWER OFF		
OSC16M	√	\checkmark				
OSC1M	√	√	√	√		
CPU	√					
ОТР	√	\checkmark				
SRAM	√	\checkmark	$\sqrt{}$			
Timer0/2	√	\checkmark				
Timer1	√	\checkmark	√			
ССР	√	\checkmark				
WDT	√	\checkmark	√	√		
External Interrupt	√	\checkmark	$\sqrt{}$	$\sqrt{}$		
PBIF	√	\checkmark	$\sqrt{}$	$\sqrt{}$		
LDO	√	\checkmark				
BGR	√	\checkmark	$\sqrt{}$			
LVT	√	\checkmark		$\sqrt{}$		
ADC	√	\checkmark		√		
DAC	√	\checkmark				
POR	√	√	√	√		
Ю	√	√	√	√		
RESET	√	√	√	√		

表6. 睡眠模式下工作的外设

注: ADC 配置为 32K 转换时钟时,可以在 PWOFF 模式下工作; WDT 必须同时使能配置字和寄存器才可在 PWOFF 模式下工作。

外部的 RSTB 管脚和看门狗溢出都能使机器复位。 通过查看 /PD 和/TO 位可以检测机器是哪种复位, /PD 位置 1 为上电复位, 置 0 为执行 SLEEP, /TO 位置 0 为看门狗溢出复位。

机器通过中断唤醒,该中断屏蔽位置 1,中断唤醒与 GIE 是否置 1 无关。

当 GIE 位被清零,机器唤醒以后执行 SLEEP 指令以后的指令;当 GIE 位被置 1,机器唤醒以后跳转到中断复位地址 (008h)。

高频或低频模式机器复位延迟时间为 18/4.5/288/72ms 加上 64 个振荡周期 (该延迟时间由 TWDT<1: 0>(配置选项 2)设置)。

在 IRC/ERIC or ERC 模式时,机器复位延迟时间为 640us。

SMCR (状态控制寄存器)

地址: 0X9F

Bit	Name	Description	Attribute	Reset
7:4	Reserved			
		休眠模式选择		
		000: IDLE 模式, 空闲模式		
3:1	SM[2:0]	001: Power Save 模式,低功耗模式	R/W	000
		011: Power Off 模式, 电源关闭模式, 不保持 MCU 和 SRAM		
		数据,唤醒后复位		
		休眠模式使能位		
0	SE	1: 使能休眠模式,硬件自动清零	R/W	0
		0: 禁止休眠模式		

11 固定参考电压(FVR)

固定参考电压或 FVR 是稳定的参考电压,独立于 VDD,可选择 1.0V、1.2V、1.1V、2.0V、2.4V或 2.2V 六种输出级别。可配置 FVR 的输出为以下各项提供参考电压:

- ➤ ADC 输入通道
- ➤ ADC 正参考电压
- ▶ 运放的输入
- ▶ DAC 正参考电压

FVRCON1

地址: 0X8F

Bit	Name	Description	Attribute	Reset
		FVR 输出 IO 使能		
7	FVROUTEN	1: 使能 FVR 输出	R/W	0
		0: 禁止 FVR 输出		
		FVR 电压放大 1 倍选择位		
6	FVRPGA	1: 使能 FVR 电压放大	R/W	0
		0: 禁止 FVR 电压放大		
		FVR 使能		
5	FVREN	1:使能 FVR	R/W	0
		0: 禁止 FVR		
		FVR 电压选择位		
		00000: 1.2V		
		00100: 1.1V		
4:0	FVR_SEL[4:0]	00101: 1.0V	R/W	00000
		01111: NTC(改变温度, fvrout 输出电压改变)		
		其他未使用		

12 ADC

AD006 包含一个 12 位 6 通道输入的 ADC,能够将一个模拟输入转换成 12 位数字信号。在根据需要配置好 A/D 模块之后,即可启动 A/D(GO=1)转换。当 A/D 转换完成之后,转换结果被装入 ADRESH:ADRESL 寄存器对,GO/DONE 位被清零且 A/D 中断标志位 ADIF 被置 1。

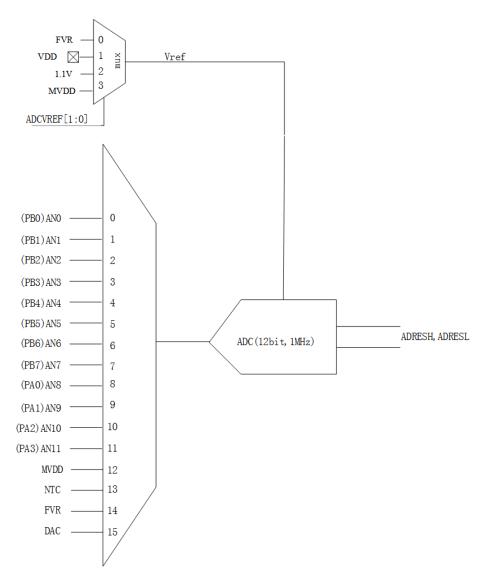


图29. A/D 结构图

执行 A/D 转换步骤:

1) 配置 A/D 模块

- ▶ 选择参考电压(通过 ADCON1[7:6]寄存器)
- ▶ 选择 A/D 输入通道 (通过 ADCON0[5:2]寄存器)

- ▶ 选择 A/D 采集时间(通过 ADCON1[5:3]寄存器)
- ▶ 选择 A/D 转换时间(通过 ADCON1[2:0]寄存器)
- ▶ 使能 A/D 模块 (通过 ADCON0[0]寄存器)
- 2) 需要时,配置 A/D 中断
 - ▶ 清零 ADIF 位
 - ➤ 将 ADIE 位置 1
 - ▶ 将 GIE 位置 1
- 3) 如果需要,需等待所需的采集时间。
- 4) 启动转换:
 - ➤ 将 GO/DONE 位置 1(ADCON0[1])
- 5) 等待 A/D 转换完成,通过以下两种方式之一判断转换是否完成:
 - ▶ 查询 GO/DONE 位是否被清零
 - ▶ 等待 A/D 中断
- 6) 读取 A/D 结果寄存器(ADRESH: ADRESL),需要时将 ADIF 位清零。 如需再次进行 A/D 转换,返回步骤 1 或者步骤 2。

注:

- 1、ADC 转换时间=ACQT(采集延时)+13TAD
- 2、ADC 在使用的过程中,如果涉及多通道采集,需要在通道采集之前先对这个通道进行三次空采集,如果使用 VDD 参考的话需要注意,VDD 大于 3.3V 时 ADC 在采集电压 260mv 一下会有问题,建议切换成为内部基准,如果在使用过程中有切换基准,需要加 8 次空采,才能消除 ADC 切换参考带来的干扰!
- 3、当等待 AD 转换时,建议增加超时处理,如下图:

12.1 ADC 的相关寄存器

ADRESH (AD 转换结果的高四位)

地址: 0X1C

Bit	Name	Description	Attribute	Reset
7:4	Reserved			
3:0	ADRESH	AD 转换结果的高四位	R/W	0000

ADRESL(AD 转换结果的低四位)

地址: 0X1D

Bit	Name	Description	Attribute	Reset
7:0	ADRESL	AD 转换结果的低 8 位	R/W	0x00

ADCON0 (ADC 控制寄存器 0)

地址: 0X1E

Bit	Name	Description	Attribute	Reset
7	ADFM	AD 结果对齐标志	R/W	0

			1	
		1: 左对齐 ADRESH = adc[11:4]		
		左对齐 ADRESL = {adc[3:0],4'b0}		
		0:右对齐 ADRESH = {4'b0,adc[11:8]}		
		右对齐 ADRESL = adc[7:0]		
		ADC 速度选择		
6	ADSP	1: 高速	R/W	0
		0: 低速		
		CHS3: CHS0 – 模拟通道选择位		
		0000: 通道 0(PB0)		
		0001: 通道 1(PB1)		
		0010: 通道 2(PB2)		
	CHS[3:0]	0011: 通道 3(PB3)		
		0100: 通道 4(PB4)		
		0101: 通道 5(PB5)		
		0110: 通道 6(PB6)		
5:2		0111: 通道 7(PB7)	R/W	0000
		1000: 通道 8(PA0)		
		1001: 通道 9(PA1)		
		1010: 通道 10(PA2)		
		1011: 通道 11(PA3)		
		1100: 通道 12(内部 LDO 输出电压)		
		1101: 通道 13(NTC)		
		1110: 通道 14(FVR)		
		1111: 通道 15(DAC)		
		GO/DONE – A/D 转换状态位		
1	GO/DONE	当 ADON=1 时:	R/W	0
	30,20111	1: A/D 转换正在进行	15.7	
		0: A/D 空闲		
0	ADON	ADON – A/D 模拟使能位	R/W	0

1: 使能 A/D 转换器模块	
0: 禁止 A/D 转换器模块	

ADCON1 (ADC 控制寄存器 1)

地址: 0X1F

Bit	Name	Description	Attribute	Reset
7:6	ADVREF[1:0]	A/D 参考电压选择位 00: FVR 01: VCC 10: 1.1V 11: MVDD (内部 LDO 输出电压)	R/W	00
5:3	ACQT[2:0]	A/D 延时采集时间选择 111: 15 TAD 110: 13 TAD 101: 11TAD 100: 9 TAD 011: 7 TAD 010: 5TAD 001: 3 TAD 000: 1 TAD	R/W	000
2:0	ADCS[2:0]	A/D 转换时钟选择位 111: 内部 256K OSC 110: FOSC/512(ADSP=0), FOSC/64(ADSP=1) 101: FOSC/128(ADSP=0), FOSC/16(ADSP=1) 100: FOSC/32(ADSP=0), FOSC/4(ADSP=1) 011: 内部 32K OSC 010: FOSC/256(ADSP=0), FOSC/32(ADSP=1) 001: FOSC/32 (ADSP=0), FOSC/8(ADSP=1) 000: FOSC/16(ADSP=0), FOSC/2(ADSP=1)	R/W	000

13 DAC

DAC 是由一串电阻所组成,可以产生不同层次的参考电压,DACON 寄存器的 4 和 5 位用来选择电阻串的最高和最低值; DAC[3:0]用于选择所要的电压值,该值由 DACS5,DACS4来决定。下图显示了四个不同选择时,内部参考电压值的计算。DAC 输出电压范围可以从(1/32)*VDD 到(3/4)*VDD。

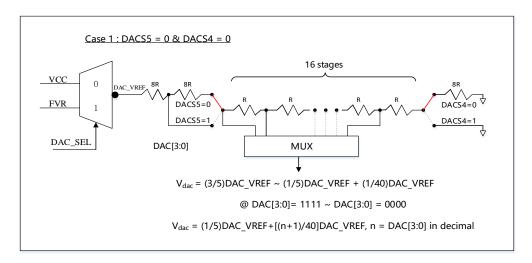


图30. 抽头选择 00

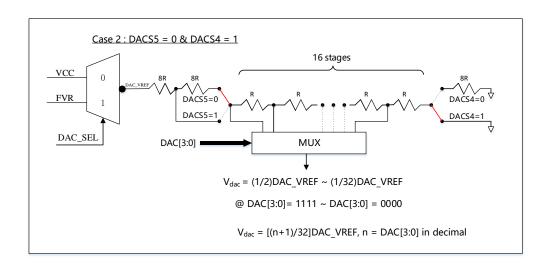


图31. 抽头选择 01

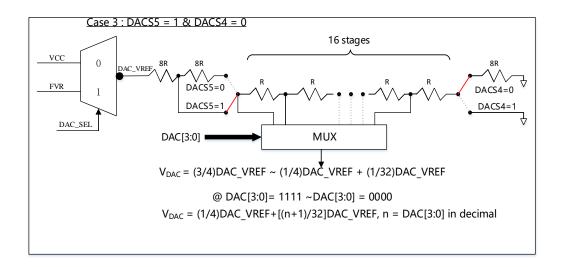


图32. 抽头选择 10

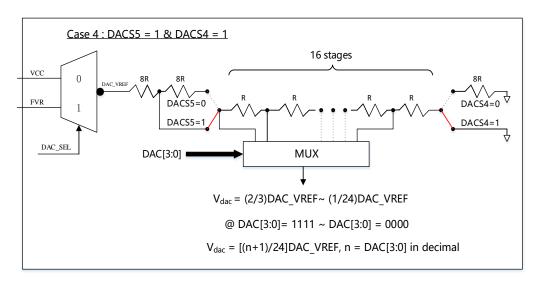


图33. 抽头选择 11

13.1 DAC 的相关寄存器

DACON(DAC 控制寄存器)

地址: 0X13

Bit	Name	Description	Attribute	Reset
	D. C. CEI	参考电压的选择	D/W/	0
7	DAC_SEL	1: FVR 0: VCC	R/W	0
		使能 DAC		
6	DACEN	1: 使能 DAC 0: 禁止 DAC	R/W	0
5	DACS5	DAC 正端电阻抽头选择	R/W	0
4	DACS4	DAC 负端电阻抽头选择	R/W	0
3:0	DAC[3:0]	DAC 输出选择(参考: PCH[1:0](OPCON[3:2]))	R/W	0000

14 运放(OP)

AD006 提供一个轨到轨运放,可以选取多个输入作为运放/比较器输入。

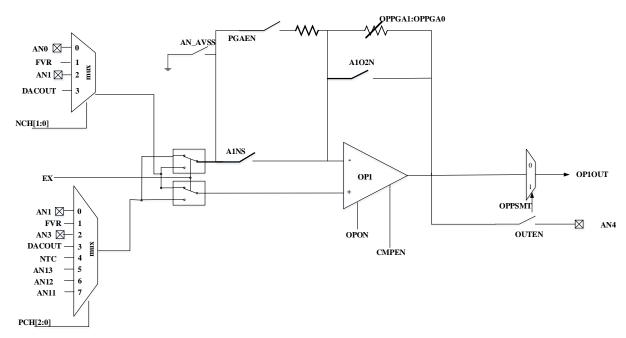


图34. 内部运放结构示意图

14.1 运放的相关寄存器

OPCON1(OP 控制寄存器)

地址: 0x14

Bit	Name	Description	Attribute	Reset
		运放输出信号		
7	OPOUT	1: 运放输出为 0	R/W	0
		0: 运放输出为1		
	LVDST	LVR 比较器输出值	R/W	0
		1: 电源电压高于设定值		
6		0: 电源电压低于设定值		
		注:与 OP 模块无关,与 LVD 模块相关		
5		负端是否接地		
	AN_AVSS	1: 接地	R/W	0
		0: 不接地		

4	PCH2	与 OPCON 寄存器中的 BIT3 和 BIT2 组成正端的输入	R/W	00
		内部使能放大		
3	PGAEN	1: 使能	R/W	0
		0: 禁止		
		运放输出信号是否取反		
2	OPPOS	1: 取反	R/W	0
		0: 同向		
		运放切换为比较器模式		
1	CMPMODE	1: 切换为比较器模式	R/W	0
		0: 切换为运放模式		
		运放信号输出使能		
0	OUTEN	1: 使能运放输出	R/W	0
		0: 禁止运放输出		

OPCON(运放控制寄存器)

地址: 0x15

Bit	Name	Description	Attribute	Reset
		运放使能		
7	OPON	1: 使能运放	R/W	0
		0: 关闭运放		
	EX	运放正负端交换		
6		1: 关闭交换	R/W	1
		0: 使能交换		
	A1NS	运放连接		
5		1: 负端与 NCH 选择连接	R/W	0
		0: 断开		
4	A102N	运放 buffer 模式	R/W	0
		1: 负端与输出短接,形成 BUFFER	K/W	U

		0: 禁止		
		运放 P 输入选择,正端由 OPCON 的 BIT[3:2]以及		
		OPCON1 的 BIT4 组成:		
		PCH[2:0]→{OPCON1[4], OPCON0[3:2]}		
		000: AN1		
		001: FVR		
3:2	PCH[1:0]	010: AN3	R/W	11
		011: DACOUT		
		100: NTC		
		101: AN13		
		110: AN12		
		111: AN11		
		NCH[1:0]-运放 N 输入选择		
		00: A0N		
1:0	NCH[1:0]	01: FVR	R/W	11
		10: A1N		
		11: DACOUT		

注意:

- 1、CMPEN 在 OPCON1 第 1 位, OUTEN 在 OPCON1 第 0 位, OPOUT 在 OPCON1 第 7 位;
- 2、当 EX=1 时, N 端为 OP 负端, P 端为 OP 正端; EX=0 时, N 端为 OP 正端, P 端为 OP 页端;
- 3、在使能运放输出 AN4(PB4)时,需将 PB4 配置成输入模式,关闭内部上下拉。

地址: 0x87

Bit	Name	Description	Attribute	Reset
7:3	FILTER[4:0]	OP 的滤波时间:滤波时间= FILTER[4:0]/Fcpu	R/W	00000
		运放输出电压档的选择		
2	OPMST	1: 大于 0.3VDD/0.7VDD	R/W	0
		0: 小于 0.2 VDD/ 0.4VDD		
		内部放大倍数选择		
	OPPGA[1:0]	00: 10 倍		
1:0		01: 50 倍	R/W	00
		10: 100 倍		
		11: 200 倍		

15 比较器(CMP)

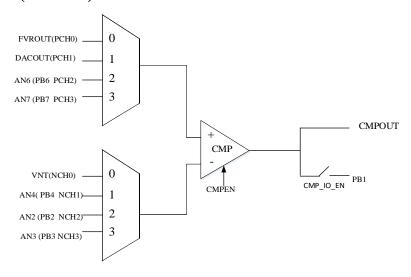


图35. 比较器的构示意图

CMPCON(比较器控制寄存器)

地址: 0x8E

Bit	Name	Description	Attribute	Reset
		比较器的使能		
7	CMPEN	1: 使能 CMP	R/W	0
		0:禁止CMP		
6	CMPOUT	比较器输出,读此位可知比较结果	R	0
		比较器对应的 IO 使能		
5	CMP_IO_EN	1: 使能 IO 输出	R/W	0
		0: 禁止使能		
		比较器输出信号是否取反		
4	CMMPOS	1: 取反	R/W	0
		0: 同向		
		比较器的正端输入		
		00: FVROUT(PCH0)		
3:2	CMPPCH[1:0]	01: DACOUT(PCH1)	R/W	00
		10: AN6(PB6 PCH2)		
		11: AN7(PB7 PCH3)		

		比较器的负端输入		
		00: FVROUT(NCH0)		
1:0	CMPNCH[1:0]	01: AN4(PB4 NCH1)	R/W	00
		10: AN2(PB2 NCH2)		
		11: AN3(PB3 NCH3)		

备注: CMP 的滤波比特位在 8.3 小节的 PMS 寄存器中

16 指令集合

Bin	Instruction	Description	Cycles	Status Affected
1	NOP	No Operation	1	
2	RETFIE	Return from interrupt	2	
3	RETURN	Return from Subroutine	2	
4	SLEEP	Go into standby mode	1	
5	CLRWDT	Clear Watchdog Timer	1	
6	MOVWF f	Move W to f	1	
7	CLRF f	Clear f	1	Z
8	CLRW	Clear W	1	Z
9	SUBWF f,d	Subtract W from f	1	C, DC, Z
10	DECF f,d	Decrement f	1	Z
11	IORWF f,d	Inclusive OR W with f	1	Z
12	ANDWF f,d	AND W with f	1	Z
13	XORWF f,d	Exclusive OR W with f	1	Z
14	ADDWF f,d	Add W and f	1	C, DC, Z
15	MOVF f,d	Move f	1	Z
16	COMF f,d	Complement f	1	Z
17	INCF f,d	Increment f	1	Z
18	DECFSZ f,d	Decrement f,Skip if 0	1(2)	
19	RRF f,d	Rotate Right f throuth Carry	1	С
20	RLF f,d	Rotate Left f throuth Carry	1	С
21	SWAPF f,d	Swap nibbles in f	1	
22	INCFSZ f,d	Increment f,Skip if 0	1(2)	
23	BCF f,b	Bit Clear f	1	
24	BSF f,b	Bit Set f	1	
25	BTFSC f,b	Bit Test f, Skip if Clear	1(2)	
26	BTFSS f,b	Bit Test f, Skip if Set	1(2)	
27	CALL k	Call subroutine	2	
28	GOTO k	Go to address	2	
29	MOVLW k	Move literal to W	1	
30	RETLW k	Return with literal in W	2	
31	IORLW k	Inclusive OR literal with W	1	Z
32	ANDLW k	And literal and W	1	Z

33	XORLW k	Exclusive OR literal with W	1	Z
34	SUBLW k	Subtract W from literal	1	C, DC, Z
35	SUBWFC F,d	F - W -/C -> W	1	C, DC, Z
	SUBWFC F,d	F -W -/C -> F	1	C, DC, Z
2.5	IOSFW F	F -> W	1	Z
36	IOSWF F	W -> F	1	
27	INT(EM)	PC+1 -> [SP], 001H -> PC	2	
37	INT(FM)	S/W interrupt PC + 1 -> Top of Stack, 002h -> PC	2	

注释: 1. 两周期指令为分支跳转指令

2. bit : Bit 地址为 8 位寄存器 R 中的某一位 F : 寄存器地址 (00h to 3Fh)

K: 立即数

W: 累加器

d: 目的选择:

=0 (结果存放在 W)

=1 (结果存放在 R)

dest: 目的地

PC: 程序指针

PCLATH: 高位缓冲程序指针

WDT: 看们狗计数器

GIE: 中断允许总控制位

TO: 计数溢出位

PD: 省电模式选择位

C: 进位/借位标志

DC: 辅助进位/借位标志.(低四位向高四位进位/借位标志)

Z: 零标志

17 绝对最大额定值

电源供应电压	$V_{SS}\text{-}0.3V{\sim}V_{SS}\text{+}6.0V$
端口输入电压	$V_{SS}\text{-}0.3V{\sim}V_{DD}\text{+}0.3V$
储存温度	-50~125℃
工作温度	-40~85°C
I _{OH} 总电流 ······	-80mA
IoL 总电流 ······	80mA
总功耗	500mW

18 操作条件

DC	供电电压:	
	数字工作电压	2.2V~5.5V
	模拟工作电压	2.5V~5.5V
工作	E温度 ······	-40~85℃

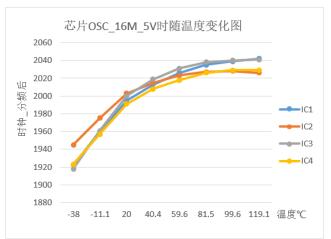
19 电气特性

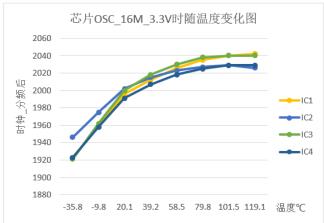
直流特性

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
VDD	工作电压	_	fSYS=16MHz	2.2	_	5.5	V
VDD	工作电压	_	fSYS =1MHz	2.2	_	5.5	V
IDD	工作电流	5.0V	fSYS =16MHz	_	1.45	1.7	mA
IDD -	工作电流	5.0V	fSYS =1MHz	_	0.40	0.42	mA

IO 特性

Symbol	Parameter	1	Test Condition	Min	Тур	Max	Unit
IOL	PA0、PB0—PB2 灌电流	5.0	CUR=0	_	27.7	_	mA
IOL	其他 I/O 口灌电流	5.0	CUR=0	_	3.61	_	mA
IOL	PA0、PB0—PB2 灌电流	5.0	CUR=1	_	27.7	_	mA
IOL	其他 I/O 口灌电流	5.0	CUR=1		20.7	_	mA
IOL	PA0、PB0—PB2 拉电流	5.0	CUR=0	_	9.22	_	mA
IOL	其他 I/O 口拉电流	5.0	CUR=0	_	9.24	_	mA
IOL	PA0、PB0—PB2 拉电流	5.0	CUR=1		9.23	_	mA
IOP	其他 I/O 口拉电流	5.0	CUR=1	_	9.46	_	mA
RPH	I/O 口上拉电阻	5.0	PULL RES IS 30K	_	30	_	ΚΩ
RDH	I/O 口下拉电阻	5.0	LOW RES IS 30K		32.9	_	ΚΩ
RPH	I/O 口上拉电阻	5.0	PULL RES IS 190K		190		ΚΩ
RDH	I/O 口下拉电阻	5.0	LOW RES IS 300K		300		ΚΩ




系统时钟/看门狗特性

Symbol	Parameter		Test Condition	Min	Тур	Max	Unit
COLIG	系统时钟(OSCF)	5.0V	OTP_OSCM_16M\ FOSC_DIV1	_	16	_	Var
fSYS 系统时钟(OS	系统时钟(OSCF)	5.0V	OTP_OSCM_1M\ FOSC_DIV1	_	1	_	MHz
		5.0V	WDTEN_ON、TWDT_111	_	32	_	
4D CTTD	WDT 复位时间		WDTEN_ON、TWDT_110	_	4.5	_	
tRSTD	WDI 复世时间		WDTEN_ON、TWDT_101	_	288	_	ms
			WDTEN_ON、TWDT_100	_	72	_	

16M 时钟与温度曲线(实验室数据)

<u></u>			IC1	IC2	IC3	IC4
序号	TMP	VCC	OSC_16M	OSC_16M	OSC_16M	OSC_16M
110	-38. 1	3.898	1920	1943	1916	1922
111	-38	4. 987	1922	1945	1918	1923
112	-37. 1	2.617	1919	1936	1914	1926
113	-35.8	3. 213	1922	1946	1921	1923
163	-11.1	5.006	1960	1975	1961	1957
164	-10.3	2.67	1956	1970	1955	1957
165	-9.8	3. 247	1960	1975	1962	1958
166	-9.4	3. 928	1962	1975	1963	1959
255	20	5.027	1995	2003	2000	1991
256	20	2. 739	1994	2000	1998	1989
257	20.1	3. 29	1996	2002	2000	1991
258	20.2	3.964	1996	2002	2000	1992
301	39. 2	3.318	2012	2015	2018	2007
302	40.2	3. 985	2013	2014	2018	2007
303	40.4	5.031	2013	2015	2019	2008
304	41.1	2. 781	2013	2015	2017	2007
341	58. 5	3.344	2026	2023	2030	2018
342	59	4.004	2026	2023	2030	2018
343	59.6	5.024	2026	2023	2031	2018
344	60.5	2.818	2026	2023	2031	2018
372	78.8	2. 852	2034	2027	2037	2025
373	79.8	3. 371	2035	2027	2038	2025
374	80.8	4.025	2035	2027	2038	2026
375	81.5	5.011	2035	2027	2038	2026
418	98. 9	4.044	2039	2028	2040	2028
419	99.6	4. 994	2039	2028	2040	2029
420	100.6	2. 889	2039	2028	2040	2028
421	101.5	3. 4	2040	2029	2040	2029
667	119.1	4. 968	2042	2026	2041	2029
668	119.1	2. 926	2041	2026	2041	2029
669	119.1	3. 427	2042	2026	2040	2029
670	119.1	4.064	2042	2026	2040	2029

LVR 电气特性

Symbol	Parameter	Test	Condition	Min	Тур	Max	Unit
IQ	LVD Quiescent Current	5.0V			10		uA
		LVT22V			2.2		
	LVT24V			2.4			
	LVT26V			2.6			
		LVT27V	- - - - LVR 使能		2.7	+5%	
		LVT29V			2.9		
		LVT30V			3.0		
VLVR	Low Voltage Reset Voltage/[迟滯	LVT31V		-5%	3.1		V
VLVK	voltage/[达滞 50mV 左右]	LVT33V	LVK使能	-3%	3.3		'
		LVT36V			3.6		
		LVT37V			3.7		
		LVT38V			3.8		
		LVT41V			4.1		
		LVT42V			4.2		
		LVT43V			4.3		

ADC 电气特性

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
工作电压				2.2	5.0	5.5	V
转换电流				1.25	1.3	1.46	mA
输入电压		5.0V		0		VDD	V
INL	Integral Non-linearity		AVCC=5.0V		-4/+2		LSB
DNL	Differential Non-linearity		AVCC=5.0V		±1		LSB

DAC 电气特性

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Integral Nonlinearity	INL		_	±0.1	_	LSB
Differential Nonlinearity	DNL		_	±0.1	_	LSB
Output Settling Time to 1% Full-scale	t _{SETTLE}	VOUT change between 25% and 75% Full Scale		1	_	μs
Voltage Reference Range	V _{REF}		1	_	v _{DD}	V

OP 电气特性

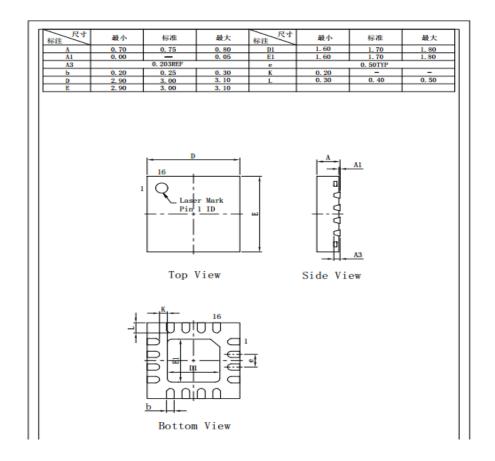
Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
工作电压		5.014		2.2	5	5	V
静态电流				_	0.1	_	mA
输入失调电压		5.0V		_	3	_	mV
共模电压范围				2	_	6	mV

POR 电气特性

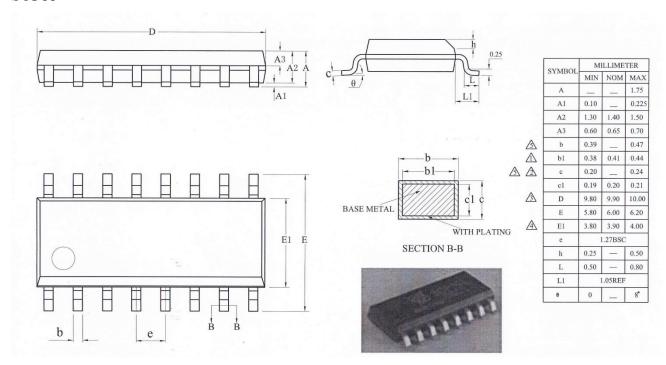
Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
t por	POR Trigger Voltage		-40~85°C		1.5		V

BOR 电气特性

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
VBOR	BOR Trigger Voltage		40, 9590		1.7		V
IQ	Power Supply Current		-40~85°C		0.5	1	uA


FVR 电气特性

Symbol	Parameter	Tes	Min	Тур	Max	Unit	
FVR		3.3-5.0	AVDD=1V	0.99	1	1.01	V
FVK		3.3-5.0	AVDD=1*2V	1.98	2	2.02	V



20 封装尺寸

QFN16

SOP16

第 100 页 共 100 页